

311 Meacham Avenue ! Elmont, NY 11003 ! Tel. (516) 327-0000 ! Fax (516) 327-4645
 e-mail: excalibur@mil-1553.com website: www.mil-1553.com

EXCALIBUR

PCI/MCH Family

Software Tools

Programmer’s Reference

 Table of Contents

PCI/MCH Software Tools: Programmer's Reference page i

Table of Contents

1 Introduction

Getting Started ... 1-1

Overview ... 1-2

Installation .. 1-3

PCI/MCH Software Tools Functions ... 1-3
Compiler Options ... 1-3
Conventions Used in the Programmer’s Reference 1-4

Technical Support ... 1-4

2 General Functions
Get_BIT_Value_MCH .. 2-1
Get_Broadcast_Setting_MCH ... 2-3
Get_Curr_Command_Word_MCH .. 2-3
Get_Error_String_MCH ... 2-4
Get_Op_Status_Reg_MCH ... 2-5
Get_Pending_Value_MCH .. 2-8
Init_Module_MCH .. 2-10
Release_Module_MCH ... 2-11
Set_Broadcast_MCH ... 2-12
Set_Interrupt_Mask_MCH ... 2-13
Set_Mode_MCH .. 2-14
Set_PingPong_MCH ... 2-14
Set_Protocol_MCH .. 2-15
Stop_Card_MCH ... 2-16

Using Interrupts in Windows ... 2-16
Get_Interrupt_Count_MCH ... 2-17
Wait_For_Interrupt_MCH .. 2-18
Wait_For_Multiple_Interrupts_MCH .. 2-20

3 Bus Controller Mode

Command Stack and Data Block Structures 3-1
Command Stack Entry .. 3-2

Control Word .. 3-2
CONTROL WORD DESCRIPTION .. 3-3
OPCODE DEFINITION .. 3-4
CONDITION CODES ... 3-6

1553 Command Words.. 3-6
1553 Status Words .. 3-7
Timer Value ... 3-7
Data Block Number ... 3-7
Branch Address ... 3-7

Command Block Chaining ... 3-8

Bus Controller Functions .. 3-10
Command_Word_MCH ... 3-10
Control_Word_MCH .. 3-11
Get_BC_Cmd_MCH .. 3-13
Last_BC_Cmdnum_MCH .. 3-14
Load_BC_Datablk_MCH ... 3-15

 Table of Contents

page ii Excalibur Systems

Read_BC_Datablk_MCH... 3-16
Run_BC_MCH ... 3-17
Set_BC_Cmd_MCH .. 3-18

4 Remote Terminal Mode

Data Structures in RT Mode ... 4-1
Subaddress Receive Data .. 4-2

RECEIVE INFORMATION WORD ... 4-3
Subaddress Transmit Data ... 4-4

TRANSMIT INFORMATION WORD ... 4-4
Mode Code Data .. 4-5

MODE CODE RECEIVE INFORMATION WORD 4-6
MODE CODE TRANSMIT INFORMATION WORD 4-7

Remote Terminal Functions .. 4-8
Assign_Buffer_MCH .. 4-8
Get_Datablk_Accessed_MCH ... 4-9
Load_Buffer_MCH ... 4-10
Load_Datablk_MCH .. 4-11
Read_Datablk_MCH .. 4-12
Run_RT_MCH ... 4-13
Set_Legal_Command_MCH ... 4-14
Set_RT_Num_MCH ... 4-15
Set_RT_Status_MCH .. 4-16
Set_Status_Clear_MCH .. 4-18
Set_Subaddr_Interrupt_MCH .. 4-19

5 Bus Monitor Mode

The Bus Monitor Data Block Structure .. 5-1
1553 Data Words ... 5-2
Command Words ... 5-2
Status Words ... 5-2
Time-Tag ... 5-2
Message Information Word ... 5-2

ERROR INFORMATION BITS ... 5-3

Bus Monitor Functions .. 5-4
Clear_Monitor_RT_MCH ... 5-4
Monitor_All_RT_MCH .. 5-4
Monitor_RT_MCH .. 5-5
Read_Next_Message_MCH .. 5-6
Run_BM_MCH .. 5-7
Run_BMRT_MCH .. 5-7

6 Appendices

Appendix A: Flags for PCI/MCH Software Tools Functions 6-2

Appendix B: PCI/MCH Software Tools Library 6-6

Appendix C: PCI/MCH Software Tools Code Index 6-9

Appendix D: Error Messages .. 6-11

Function Index

 Table of Contents

PCI/MCH Software Tools: Programmer's Reference page iii

Figures

Figure 3-1: BC Command Stack Entry .. 3-2

Figure 3-2: Control Word Definition .. 3-2

Figure 3-3: Minor Frame Branching ... 3-8

Figure 3-4: Minor Frame Sequencing ... 3-8

Figure 4-1: RT Data Block Structure .. 4-2

Figure 5-1: Bus Monitor Data Block Structure 5-1

Figure 5-2: Message Information Word 5-2

 Table of Contents

page iv Excalibur Systems

Chapter 1 Introduction

PCI/MCH Software Tools: Programmer's Reference page 1 - 1

1 Introduction

Chapter 1 provides an overview of the EXC-1553PCI/MCH,

EXC-1553cPCI/MCH and the M4K1553MCH avionics communication

hardware and Excalibur PCI/MCH Family Software Tools. The topics covered

are:

 Getting Started page 1-1

 Overview page 1-2

 Installation page 1-3

 PCI/MCH Software Tools Functions page 1-3

 Compiler Options page 1-3

 Conventions Used in the Programmer’s Reference page 1-4

 Technical Support page 1-4

Getting Started

Welcome to the Excalibur PCI/MCH Software Tools – a tool for creating

custom diagnostic programs for the following boards and modules:

 EXC-1553PCI/MCH

 EXC-1553cPCI/MCH

 EXC-1553PMC/MCH

 EXC-1553ccPMC/MCH

 M4K1553MCH

The generic term PCI/MCH is used in the Programmer's Reference to refer

to all of the above hardware items.

Be sure that you have following items before starting to write programs:

 An Excalibur Software Tools diskette(s) for PCI/MCH

 The Excalibur PCI/MCH Family Software ToolsProgrammer’s Reference

 A Registration Card

NOTE If an item is missing or damaged, contact your Excalibur

representative.

Chapter 1 Introduction

page 1 - 2 Excalibur Systems

Overview

The EXC-1553PCI/MCH is a dedicated 1553 test and simulation board

while the M4K1553MCH is a stand-alone module that is mounted on to

an EXC- 4000 family, multi-protocol carrier board. Excalibur PCI/MCH

Software Tools enables the user to write custom diagnostic programs for

the Excalibur PCI/MCH boards and module.

To use the Software Tools a familiarity with the functioning of the 1553

data communications bus is required. This overview is an introduction

to the 1553 bus and will assist the user to understand the rational of

the Software Tools.

Military Standard MIL-STD-1553 has been a mainstay of military

avionics communications since its introduction in 1975. This

specification defines a data communications bus capable of supporting

up to 32 devices, called Remote Terminals, and coordinated by a device

called a Bus Controller. The data communications bus is physically

composed of two wires used to transmit and receive a differential signal

between the various devices. For backup purposes, a second pair of

wires is often used and is called the secondary bus. The two buses are

also referred to as “Bus A” and “Bus B”.

The Bus Controller directs the flow of data on the data bus. Since all

transmission takes place over a single pair of wires, some mechanism

must be included to ensure that only a single device attempts to

transmit at any given time. MIL-STD-1553 deals with this issue by

dictating that all communication must be initiated by the Bus

Controller. The Bus Controller determines the sequence of messages,

the size of each message, and the timing between messages. The Bus

Controller also determines which Remote Terminals will be

transmitting or receiving data.

Each Remote Terminal can transfer data to or receive data from the Bus

Controller or another Remote Terminal in response to a command from

the Bus Controller. Remote Terminals for their part never initiate

communications but merely react to the Bus Controller.

The Bus Monitor is a passive device which records 1553 bus traffic. A

monitor may collect all the data from the bus or may collect selected data.

Data is transmitted in the form of messages. Messages consist of a

command word containing routing information transmitted by the Bus

Controller, between 1 and 32 data words containing the information to be

communicated, and a status word transmitted by a Remote Terminal

acknowledging receipt of a command. The number of message types are

defined in MIL-STD-1553. The most common message types involve data

transfer either from the Bus Controller (BC) to a single Remote Terminal

(RT) or from an RT to the BC. Less frequently, data may be broadcast

from the Bus Controller to all RTs or from one RT directly to a second RT.

Chapter 1 Introduction

PCI/MCH Software Tools: Programmer's Reference page 1 - 3

In all cases, the type of message is encoded in the command word that is

transmitted by the Bus Controller.

Installation

For hardware and software installation instructions, see the

readme.pdf file on the root folder of the installation CD. When

downloading new software from the Excalibur website, the readme.pdf

file is contained in the zip file.

The Excalibur Installation CD you received with your package is the

most recent release of the CD as of the date of shipping. Software and

documentation updates can be found and downloaded from our website:

www.mil-1553.com.

The standard software provided with Excalibur boards and modules is

for Windows operating systems. For more details, see the readme.pdf

file. Software for other operating systems may be available. Check on

our website or write to excalibur@mil-1553.com.

PCI/MCH Software Tools Functions

PCI/MCH Software Tools is a set of ‘C’ language subroutines designed to

aid users of the Excalibur PCI/MCH boards and module to write test

programs. These functions provide access to all of the PCI/MCH

functions in a structured and straightforward programming

environment.

NOTE In the Programmer's Reference the term 'module' is used to refer to

both:

 A M4K1553MCH module on a carrier board and

 A channel on a EXC-1553PCI/MCH or EXC-1553cPCI/MCH

Software Tools is available for Windows operating systems. The functions

were written and tested using Borland C++ and Microsoft Visual C++.

Compiler Options

Programmers must use one of the following calling options, depending

on the compiler used:

 The Borland DLL is compiled using _stdcall options

 The Microsoft DLL is compiled using _cdecl options

The driver functions in the PCI/MCH Software Tools are supplied both in

source form and linked as a DLL. When writing application-programs,

keep in mind that the PCI/MCH is a physical resource, and therefore

you cannot run multiple copies of the same program simultaneously.

Each function is presented with its formal definition, including data types

of all input and output variables. A brief description of the purpose of the

function is provided along with the legal values for inputs where

http://www.mil-1553.com/
mailto:excalibur@mil-1553.com

Chapter 1 Introduction

page 1 - 4 Excalibur Systems

applicable. All structures and flags used by PCI/MCH Software Tools

functions are defined in this Programmer’s Reference (see Appendix C:

Flags for PCI/MCH Family Software Tools Functions, page 6-2.

Functions are written as ‘C’ functions, i.e., they return values. A

negative value signifies an error. Full error messages may be printed

using the Get_Error_String function (see Appendix F: Error Messages,

page 6-11)

In Windows all user-defined programs must include the file

proto_mch.h. This file includes all the necessary header files and DLL

functions to operate PCI/MCH Software Tools for PCI/MCH boards/module.

Conventions Used in the Programmer’s Reference

To help differentiate between different kinds of information, the

following text styles are used in the Programmer’s Reference:

Functions look like this.

Variables look like this: unsigned short int = usint

Parameters look like this.

File names look like this.

FLAGS look like this.

Technical Support

Excalibur Systems is ready to assist you with any technical questions

you may have. For technical support, see the Support section of our

website: www.mil-1553.com. You can also contact us by phone. To find

the location nearest you, see the Contact Us section of our website.

http://www.mil-1553.com/

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 1

2 General Functions

Chapter 2 describes the general Excalibur PCI/MCH Software Tools that are

necessary to set up and operate the PCI/MCH. These functions are not

mode specific and apply to each PCI/MCH module or each 1553 channel

on a board.

The functions described in this chapter are:

Get_BIT_Value_MCH Release_Module_MCH

Get_Broadcast_Setting_MCH Set_Broadcast_MCH

Get_Curr_Command_Word_MCH Set_Interrupt_Mask_MCH

Get_Error_Msg_MCH Set_Mode_MCH

Get_Error_String_MCH Set_PingPong_MCH

Get_Op_Status_Reg_MCH Set_Protocol_MCH

Get_Pending_Value_MCH Stop_Card_MCH

Init_Module_MCH

Interrupts

To handle interrupts in Windows, see the section Using Interrupts in

Windows, page 2-16. The functions described are:

Get_Interrupt_Count_MCH

Wait_For_Interrupt_MCH

Wait_For_Multiple_Interrupts_MCH

Get_BIT_Value_MCH

Description Get_BIT_Value_MCH returns information on the current

health of the PCI/MCH. This information is read

from the BIT Word register. (BIT stands for Built-In

Test.)

The values of bits 08–12 of the BIT Word register

are the result of a user-initiated test. The test is

performed when a 1 is written to Bit 14 of the

Control register. The test takes 1 msec. to perform

and has a fault coverage of 93.4%. (Once the module

has been started, the module must be stopped before

running a Built-In Test.) After 1 msec, bits 08–12

can be read.

Bit 13 is the result of a Terminal Address Parity test

performed by the hardware when an RT is set up.

Bit 14 is the result of a Wrap test performed by the

hardware when the board sends out a word.

Chapter 2 General Functions

page 2 - 2 Excalibur Systems

Get_BIT_Value_MCH (cont.)

Syntax Get_BIT_Value_MCH (int handle, usint *bitval)

Input parameters handle The handle returned by Init_Module_MCH

Output parameters bitval The information on the current health

of the PCI/MCH

 Bit
Bit
Name

Description

 14 WRAPF Wrap Fail. The PCI/MCH automatically
compares the transmitted word (encoder
word) to the reflected decoder word by way of
the continuous loop-back feature. If the
encoder word and reflected word do not
match, the WRAPF bit is asserted. The loop-
back path is via the MIL-STD-1553 bus
transceiver.

 13 TAPF RT MODE ONLY Terminal Address Parity

Fail. This bit reflects the outcome of the
remote terminal address parity check. A logic
1 indicates a parity failure. When a parity
error occurs the board does not begin
operations (STEX bit force to logic 0) and bus
A and B do not enable.

 12 BITF 1 = BIT fail.

Interrogate bit 11 and 10 to determine the
specific bus that failed.

 11 BUAF Bus A Fail.

1 = A BIT test failure in Bus A.

 10 BUBF Bus B Fail.

1 = A BIT test failure in Bus B.

 09 MSBF Memory Test Fail. Most significant memory
byte failure.

 08 LSBF Memory Test Fail. Least significant memory
byte failure.

 Ignore all other bits.

Return values ebadhandle Invalid handle specified: should be

value returned by Init_Module_MCH

 0 If successful

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 3

Get_Broadcast_Setting_MCH

Description Get_Broadcast_Setting_MCH returns the current value of

the broadcast flag.

Syntax Get_Broadcast_Setting_MCH (int handle, usint

*broadcast)

Input parameters handle The handle returned by Init_Module_MCH

Output parameters broadcast Broadcast setting

 > 0 BROADCAST

If the board is set up to treat

commands to RT31 as broadcast

commands.

 0 NOBROADCAST

If the board is set up to treat

commands to RT31 as regular

commands.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 0 If successful

Get_Curr_Command_Word_MCH

Description Get_Current_Command_Word_MCH returns the most

recently processed command word.

Syntax Get_Current_Command_Word_MCH (int handle, usint

*curcmd)

Input parameters handle The handle returned by Init_Module_MCH

Output parameters curcmd The most recently processed command

word.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 0 If successful

Chapter 2 General Functions

page 2 - 4 Excalibur Systems

Get_Error_String_MCH

Description Get_Error_String_MCH accepts the error returns from

other Software Tools functions. This function returns

the string containing a corresponding error message.

Syntax Get_Error_String_MCH (int errcode, int errlen char

*errstring)

Example char ErrorStr[255];

Get_Error_String (errorcode, 255, &Errorstr);

printf(“error is: %s”, ErrorStr);

Input parameters errcode The error code returned from a Software

Tools call

 errlen The maximum length of a string to be

returned

 Note: If the actual error is not longer

than the length specified, the error

string returned will end with a 'new

line'.

Output parameters errstring A string of up to errlen characters, with

the corresponding error message. In

case of bad input, a string denoting

that.

Return values 0 If successful

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 5

Get_Op_Status_Reg_MCH

Description Get_Op_Status_Reg_MCH shows the current status of

the PCI/MCH.

Syntax Get_Op_Status_Reg_MCH (int handle, usint *opstat)

Input parameters handle The handle returned by Init_Module_MCH

Output parameters opstat The current status of the PCI/MCH

 Bit Bit Name Description

BC Mode 10-15 Reserved Set to 0

 09 MSEL1 Mode Select 1. In conjunction with Mode
Select 0, this bit determines the
PCI/MCH's mode of operation.

 08 MSEL0 Mode Select 0. In conjunction with Mode
Select 1, this bit determines the
PCI/MCH's mode of operation.

 MSEL1 MSEL0 Mode of Operation

 0 0 BC Mode

 0 1 RT Mode

 1 0 BM Mode

 1 1 RT/ Concurrent BM Mode

 07 A/B_STD Military Standard 1553A or 1553B. This bit
determines whether the PCI/MCH will
operate under MIL-STD-1553A or 1553B
protocol.

1 = Forces the board to look for all
responses in 9μsec. or generate time-
out errors.

0 = Automatically allows the PCI/MCH to
operate under the MIL-STD-1553B
protocol (see the User’s Manual for
your hardware.)

 04-06 Reserved

 03 EX PCI/MCH Executing. This read-only bit
indicates whether the PCI/MCH is
presently executing or is idle.

1 = The PCI/MCH is executing.
0 = The PCI/MCH is idle.

 02 Reserved

 01 Ready PCI/MCH Ready. This read-only bit is
cleared on reset.

1 = The PCI/MCH has completed
initialization or BIT, and regular
operation may begin.

Chapter 2 General Functions

page 2 - 6 Excalibur Systems

Get_Op_Status_Reg_MCH (cont.)

BC Mode (cont.) 00 TERACT PCI/MCH Terminal Active. This read-only
bit is cleared on reset.

1 = The PCI/MCH is presently processing
a 1553 message.

 Note: When STEX transitions from 1 to 0,

EX and TERACT stay active until
command processing is complete.

RT Mode 11-15 RTA[4-0] Remote Terminal Address Bits. These five
bits contain the remote terminal address.
The RTA4 bit is the MSB bit, while the
RTA0 bit is the LSB bit.

 10 RTAPTY Terminal Address Parity Bit. This bit is
appended to the remote terminal address
bus (RTA[4-0]) to supply odd parity. The
board requires odd parity for proper
operation.

 09 MSEL1 Mode Select 1. In conjunction with Mode
Select 0, this bit determines the
PCI/MCH's mode of operation.

 08 MSEL0 Mode Select 0. In conjunction with Mode
Select 1, this bit determines the
PCI/MCH's mode of operation.

 MSEL1 MSEL0 Mode of Operation

 0 0 BC Mode

 0 1 RT Mode

 1 0 BM Mode

 1 1 RT/ Concurrent BM Mode

 07 A/B STD Military Standard 1553A or 1553B. This
bit determines whether the PCI/MCH will
operate under MIL-STD-1553A or 1553B
protocol.

1 = Enables the XMTSW bit (Bit 00 of
the Control Register) (1553A).

0 = Automatically allows the PCI/MCH to
operate under the MIL-STD-1553B
protocol.

 04-06 Reserved

 03 EX PCI/MCH Executing. This read-only bit
indicates whether the card is presently
executing or is idle.

1 = The PCI/MCH is executing
0 = The PCI/MCH is idle

 02 TPARF Terminal Parity Fail. Read only.

This bit indicates the observance of a terminal
address parity error. The PCI/MCH checks for
odd parity. This bit reflects the parity of
Operational Status Register bits 10 - 15.

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 7

Get_Op_Status_Reg_MCH (cont.)

RT Mode (cont.) 01 READY PCI/MCH Ready. This read-only bit is cleared
on reset.

1 = The PCI/MCH has completed initialization
or BIT, and regular operation may begin.

 00 TERACT PCI/MCH Terminal Active. This read-only bit is
cleared on reset.

1 = The PCI/MCH is presently processing a
1553 message.

BM Mode 10-15 Reserved

 09 MSEL1 Mode Select 1. In conjunction with Mode
Select 0, this bit determines the PCI/MCH's
mode of operation.

 08 MSEL0 Mode Select 0. In conjunction with Mode
Select 1, this bit determines the PCI/MCH's
mode of operation.

 MSEL1 MSEL0 Mode of Operation

 0 0 BC Mode

 0 1 RT Mode

 1 0 BM Mode

 1 1 RT/ Concurrent-BM Mode

 07 A/B_STD Military Standard 1553A or 1553B Standard.
This bit determines whether the PCI/MCH will
look for the RT’s response in 9μsec. (MIL-
STD-1553A) or in 15μsec. (MIL-STD-1553B).

1 = Forces the PCI/MCH to declare a time-out
error condition if the RT has not responded
in 9μsec.

0 = Allows the PCI/MCH to declare a time-out
error condition if the RT has not responded
in 15μsec.

 04-06 Reserved

 03 EX PCI/MCH Executing. This read-only bit
indicates whether the PCI/MCH is presently
executing or whether it is idle.

1 = The PCI/MCH is executing.
0 = The PCI/MCH is idle.

 02 Reserved

 01 READY PCI/MCH Ready. This read-only bit is cleared
on reset.

1 = The PCI/MCH has completed initialization
or BIT, and regular operation may begin.

 00 TERACT PCI/MCH Terminal Active. This read-only
bit is cleared on reset.

1 = The PCI/MCH is presently processing a
message.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 0 If successful

Chapter 2 General Functions

page 2 - 8 Excalibur Systems

Get_Pending_Value_MCH

Description Get_Pending_Value_MCH returns a list of interrupts that

occurred since the function was last called. The

function should be called in an interrupt routine to

determine why the interrupt occurred.

Syntax Get_Pending_Value_MCH (int handle, usint *pendval))

Input parameters
handle The handle returned by Init_Module_MCH

Output parameters
pendval The contents of the pending register.

 Bit Bit Name Description

General 11 MERR Message Error Interrupt.

1 = The occurrence of a message error.
The PCI/MCH can detect

 Manchester
 sync-field
 word count
 1553 word parity
 bit count
 protocol errors

This bit will be set and an interrupt
generated (if not masked) after message
processing is complete.

RT Mode Only 13 TAPF Terminal Address Parity Fail Interrupt.
This bit reflects the outcome of the remote
terminal address parity check.

1= indicates a parity failure. When a parity
error occurs, the PCI/MCH does not
begin operation, the TAPF bit is
asserted here and in the BIT Word
Register, and an interrupt is generated
(if not masked).

 10 SUBAD Subaddress Accessed Interrupt.

1 = A subaddress, for which
Set_Subaddr_Interrupt_MCH, page 4-19

has called with inttype = ACCESS, has

transacted a message.

 09 BDRCV Broadcast Command Received Interrupt.

1 = A subaddress, for which
Set_Subaddr_Interrupt_MCH, page 4-19
has been called with inttype =

BROADCAST, has received a

Broadcast message. The PCI/MCH
suppresses Status word transmission.

 08 N/A Not applicable

 07 ILCMD Illegal Command Interrupt.

1 = An illegal command by the PCI/MCH.

Upon receipt of this command, the
PCI/MCH responds with a status word
only; Bit 9 of the status word is set to
logic 1.

 06 N/A Not applicable

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 9

Get_Pending_Value_MCH (cont.)

BC Mode Only 05 EOL End of List Interrupt.

1 = The PCI/MCH is at the end of the
command block. An interrupt is
generated.

 04 ILLCMD Illogical Command Interrupt.

1 = An illogical command (i.e., Transmit
Broadcast or improperly formatted
RT-RT message) was written into the
command block. The PCI/MCH
checks for

 RT-RT Terminal address field match,

 RT-RT transmit/receive bit mismatch
and correct order

 Broadcast transmit commands.

If illogical commands occur, the PCI/MCH
will halt execution.

 03 ILLOP Illogical Opcode Interrupt.

1 = An illogical opcode (i.e., any reserved
opcode) was used in the command
block. The PCI/MCH halts operation if
this occurs. An interrupt is generated.

 02 RTF Retry Fail Interrupt.

1 = All programmed retries failed. An
interrupt is generated.

 01 CBA Command Block.

1 = A command block was accessed
(opcode 1010), if enabled. An interrupt
is generated.

Monitor Mode Only 00 MBC Monitor Block Counter Interrupt. This bit is
set if the PCI/MCH monitor block counter
reaches 0 (transition from 1 to 0). It should
be noted that the Monitor does not
discriminate between error-free messages
and those messages with errors.

Return values
ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

0 If successful

Chapter 2 General Functions

page 2 - 10 Excalibur Systems

Init_Module_MCH

Description Init_Module_MCH is the first function the user must call.

Init_Module_MCH enables the user to access up to four

modules on a single board, or any combination of up to

16 modules on four separate boards.

All channels are initially disabled, unless specifically

enabled. The default setting for all enabled channels is

set to receive channel. Transmit channels must be

specifically set by the programmer.

The function may be called with the SIMULATE

argument. If the SIMULATE argument is used, a portion

of the memory equal to the size of the board’s dual-port

RAM is set aside. This area is then initialized with an id

and version number for use in testing programs when no

module is available.

Multiple modules may be simulated. It is possible to

have real or SIMULATED modules in one application.

Up to 17 real or SIMULATED modules may be

initialized.

Before exiting a program, call Release_Module_MCH for each

module initialized with Init_Module_MCH.

Syntax Init_Module_MCH (usint device_num, usint module_num)

Input parameters device_num Value 0 – 4: the device number is the

index of the entry value set in
ExcConfig.

or SIMULATE Indicating no actual module on a

board present

 Note: If only one board is used, the define value

EXC_1553PCIMCH, for the EXC-1553PCI/MCH and

EXC-1553cPCI/MCH or EXC_4000PCI, for the

M4K1553MCH, can be used instead of a device number.

If more than one board is used the programmer must run

the ExcConfig utility to set the device number.

 module_num Value 0 – 3: according to which

PCI/MCH module on the board. The

value is ignored if device_num is

SIMULATE.

Output
parameters

none

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 11

Init_Module_MCH (cont.)

Return values sim_no_mem If init failed in SIMULATE mode due to

Malloc call failure.

 eopenkernel If there was an error opening a device.

 ekernelcantmap If a pointer to memory cannot be

obtained.

 emodnum Invalid module number specified.

 enomodule If no MCH module present at specified

location.

 ewrngmodule Module specified is not MCH

 init_failed If the module is not identified as an

MCH module or if timed out waiting

for reset.

 eallocresources If there was an error allocating

resources.

 handle If successful, the handle to the specified

board/module on the PCI/MCH. This

handle is used as the first parameter in

all PCI/MCH functions. A valid handle

is a positive number: 0 – 16

Release_Module_MCH

Description Release_Card_MCH releases the resources used by the

program and powers down the PCI/MCH. Call

Release_Module_MCH for each PCI/MCH module

initialized with Init_Module_MCH.

This must be the last function called before exiting a

program.

Syntax Release_Module_MCH (int handle)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 0 If successful

Chapter 2 General Functions

page 2 - 12 Excalibur Systems

Set_Broadcast_MCH

Description Set_Broadcast_MCH allows the user to choose whether

the PCI/MCH should regard RT31 as a regular RT

or as the RT Broadcast address.

 In RT Mode, if BROADCAST is set, messages to

RT 31 will be recorded as a broadcast command

regardless of the address of the RT.

 In Bus Monitor, mode code messages to RT31

will not be expected to generate a status word on

the part of the receiving RT.

Syntax Set_Broadcast_MCH (int handle, short Broadcast_Flag)

Input parameters handle The handle returned by
Init_Module_MCH

 Broadcast_Flag BROADCAST

If the board is to regard

commands to RT31 as

broadcast messages.

 NOBROADCAST

If the board is to regard

commands to RT31 as regular

messages.

Output parameters none

Return values ebadhandle If an invalid handle was

specified; should be value

returned by Init_Module_MCH

 einval For illegal 'flag' value

 0 If successful

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 13

Set_Interrupt_Mask_MCH

Description Set_Interrupt_Mask_MCH must be used to notify the

system, which events are to cause interrupts. The

default of the system is for no interrupts to be

generated. To receive interrupts for particular

events, use Set_Interrupt_Mask_MCH.

Syntax Set_Interrupt_Mask (int handle, usint intr)

Input parameters handle The handle returned by
Init_Module_MCH

 intr Each bit represents a type of

interrupts to be generated. Bit

definitions are as described in

Get_Pending_Value_MCH, page 2-8. If

more than one interrupt type is

requested, Get_Pending_Value_MCH

should be called within the interrupt

routine, to find out the cause of the

current interrupt.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 noirqset No interrupt allocated

 0 If successful

Chapter 2 General Functions

page 2 - 14 Excalibur Systems

Set_Mode_MCH

Description Set_Mode_MCH sets the PCI/MCH to operate in another

mode. The function performs a reset of the PCI/MCH

and initializes the PCI/MCH to its default values for the

desired mode.

Syntax Set_Mode_MCH (int handle, short mode)

Input parameters handle The handle returned by Init_Module_MCH

 mode BC_MODE_MCH For Bus Controller Mode

 RT_MODE_MCH For Remote Terminal Mode
 BM_MODE_MCH For Bus Monitor Mode
 BM_RT_MODE_

MCH

For simultaneous Remote

Terminal/Bus Monitor Mode

Output parameters none

Return values ebadhandle If an invalid handle was specified; should

be value returned by Init_Module_MCH.

 einval If an illegal mode was used as an input.

 etimeout If reset in Set_Mode_MCH is timed out.

 0 If successful

Set_PingPong_MCH

Description In RT Mode Set_PingPong_MCH allows the user to

choose if the PCI/MCH should enable the ping pong

double buffering system, or not.

In BC Mode the function causes retries to be sent

out on alternating busses.

Syntax Set_PingPong_MCH (int handle, short Pingpong_Flag)

Input parameters handle The handle returned by
Init_Module_MCH

 PPEN RT Mode: enables double buffering

 BC Mode: enables alternate bus

retries

 0 RT Mode: disables double buffering

 BC Mode: disables alternate bus

retries

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH.

 0 If successful

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 15

Set_Protocol_MCH

Description Set_Protocol_MCH sets up the PCI/MCH response time

parameters to either

 MIL-STD-1553A or

 MIL-STD-1553B specifications.

Syntax Set_Protocol_MCH (int handle, short mode)

Input parameters handle The handle returned by
Init_Module_MCH

 MIL_STD_1553A: All mode codes are defined

without data

 RT Mode Sends status within 7μsec

 Ignores T/R bit for mode

codes

 Subaddress 0 is mode

subbaddress

 Only ME and TF bits defined

in status word, all others

user programmable via
Set_RT_Status

 Broadcast of all mode codes

except 0 and 2 allowed

 BC /BM Mode Will expect RT response

within 11μsec

 Defines subaddress 0 as a

mode code

 MIL_STD_1553B: According to the MIL-STD-1553B

specifications

Output parameters none

Return values ebadhandle If an invalid handle was

specified; should be value

returned by Init_Module_MCH.

 einval If an illegal value was used as

input.

 0 If successful

Chapter 2 General Functions

page 2 - 16 Excalibur Systems

Stop_Card_MCH

Description Stop_Card_MCH halts the operation of the PCI/MCH.

Syntax Stop_Card_MCH (int handle)

Input parameters handle The handle returned by Init_Module_MCH.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 0 If successful

Using Interrupts in Windows When writing a Windows program that

processes interrupts, a separate thread is generally created to handle

the interrupt processing. This thread calls one of the

Wait_For_Interrupt functions, described below, in order to wait for the

next interrupt. When the function returns, the interrupt is processed as

needed. This method is demonstrated in the test program demo_bc.c

included with the PCI/MCH Family Software Tools package.

NOTE There is no need to reset the physical interrupt line in the

interrupt thread; this is handled internally.

In cases of very high interrupt frequency, several interrupts may occur

before the interrupt thread resumes execution. The Get_Interrupt_Count_MCH

function may be used to determine if multiple interrupts have occurred.

Conversely, it is possible that the Wait_For_Interrupt_MCH function will

indicate an interrupt that has already been processed by the thread.

(This will occur in the case where a subsequent interrupt occurs in

between the return of the Wait_For_Interrupt_MCH function and the call to

Get_Interrupt_Count_MCH.) Once again, the Get_Interrupt_Count_MCH function

may be used to determine if the interrupt has already been processed.

The following functions are described below:

Get_Interrupt_Count_MCH

Wait_For_Interrupt_MCH

Wait_For_Multiple_Interrupts_MCH

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 17

Get_Interrupt_Count_MCH

Description Get_Interrupt_Count_MCH returns the total interrupt count for

the specified PCI/MCH from the time the PCI/MCH was

initialized with Init_Module_MCH.

Syntax Get_Interrupt_Count_MCH (int handle, unsigned long

*pdwInterruptCount)

Input
parameters

handle The handle returned by
Init_Module_MCH

Output
parameters

pdwInterruptCount Pointer to an unsigned long

which receives the interrupt

count

Return
values

ebadhandle If an invalid handle was

specified; should be value

returned by Init_Module_MCH

 egetintcount If there was a kernel error

 ekernelinitmodule If error initializing kernel

related data

 ekernelbadparam If input parameter is invalid

 ekernelbadpointer If output parameter buffer is

invalid

 ekerneldevicenotopen If the specified device was not

opened

 0 If successful

Chapter 2 General Functions

page 2 - 18 Excalibur Systems

Wait_For_Interrupt_MCH

Description Wait_For_Interrupt_MCH waits for an interrupt on the PCI/MCH. It

suspends control of the calling thread while waiting, and

returns control to the thread either upon receipt of the

interrupt, or upon expiration of the time out. If timeout is set

to INFINITE, then the call will return only upon receipt of the

interrupt.

Syntax Wait_For_Interrupt_MCH (int handle, unsigned int timeout)

Example Since this function suspends execution of the calling thread, it

is generally called from a separate thread, to allow the main

thread to continue its processing. An example of a thread

routine which waits for interrupts and processes them as they

come in is as follows:

DWORD InterruptThread(int referenceParam)

{

 while (1)

 {

 int status;

 status = Wait_For_Interrupt_MCH (module_handle, INFINITE);

 if (status < 0)

 {

 // We don’t check for ekerneltimeout since we

 // passed in a timeout value of INFINITE.

 // All other return values indicate error

 // Process error…

 ExitThread(1);

 }

 // Process interrupt…

 // Check total number of interrupts

 Get_Interrupt_Count_MCH (module_handle, &numints);

 }

}

Chapter 2 General Functions

PCI/MCH Software Tools: Programmer's Reference page 2 - 19

Wait_For_Interrupt_MCH (cont.)

Input
parameters

handle The handle returned by
Init_Module_MCH

 timeout Timeout is specified in

milliseconds, or INFINITE

Output
parameters

none

Return
values

ebadhandle If an invalid handle was

specified; should be value

returned by Init_Module_MCH

 egeteventhand1 If there is an error in kernel

Get_Event_Handle, first part

 egeteventhand2 If there is an error in kernel

Get_Event_Handle, second

part

 ekernelinitmodule If error initializing kernel

related data

 ekernelbadparam If input parameter is invalid

 ekerneldevicenotopen If the specified device was not

opened

 Successful if:

 either ekerneltimeout The wait timed out without

receiving an interrupt

 or 0 An interrupt was received

Chapter 2 General Functions

page 2 - 20 Excalibur Systems

Wait_For_Multiple_Interrupts_MCH

Description Wait_for_Multiple_Interrupts_MCH waits for an interrupt on any of the

specified modules. It suspends control of the calling thread

while waiting, and returns control to the thread either upon

receipt of the interrupt, or upon expiration of the time out. If

timeout is set to INFINITE, then the call will return only upon

receipt of the interrupt.
Syntax Wait_for_Multiple_Interrupts_MCH (int *handle_list, int num_modules,

unsigned int timeout, unsigned long

*pwd_interrupt_bitfield)
Input
parameters

handle_list An array of module handles

 num_modules Number of modules in the

handle_list
 timeout Timeout is specified in milliseconds,

or INFINITE
Output
parameters

pwd_interrupt_bitfield Pointer to an unsigned long which

receives a bit field indicating which

of the modules have interrupted

(note that more than one module

may have interrupted

simultaneously). The modules are

distributed in the bit field such that

the lowest bit corresponds to the

first module in the handle_list, and

so on.
Return
values

egeteventhand1 If there is an error in kernel

Get_Event_Handle, first part
 egeteventhand2 If there is an error in kernel

Get_Event_Handle, second part
 ekernelinitmodule If error initializing kernel related

data
 ekernelbadparam If input parameter is invalid
 ekerneldevicenotopen If the specified device was not

opened
 ekernelbadpointer If output parameter buffer is invalid

 Successful if:

 either ekerneltimeout The wait timed out without

receiving an interrupt

 or 0 An interrupt was received

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 1

3 Bus Controller Mode

Chapter 3 describes Excalibur PCI/MCH operation in Bus Controller

(BC) Mode. The Bus Controller initiates all communications on the bus

This chapter discusses the following features and functions:

 Command Stack and Data Block: a description of the BC data

structures.

 Command Stack Entry Chaining: a description of how Command

Stack entries may be linked to form a command frame.

 Bus Controller Functions: a description of the functions associated

with BC Mode.

 Command_Word_MCH Load_BC_Datablk_MCH

 Control_Word_MCH Read_BC_Datablk_MCH

 Get_BC_Cmd_MCH Run_BC_MCH

 Last_BC_Cmdnum_MCH Set_BC_Cmd_MCH

Command Stack and Data Block Structures

The Bus Controller operation is based on manipulating two data

structures: a Command Stack and a Data Block.

Each Command Stack entry represents either a 1553 message or a

control instruction such as “End of List” or “Skip” (see OPCODE

DEFINITION, page 3-4). The user fills the Command Stack entries via

the Set_BC_Cmd_MCH function and reads them back via the

Get_BC_Cmd_MCH function.

The Data Block is an area of memory associated with a particular

Command Stack entry that contains the data associated with the

command. This data area must be filled in by the user for BC to RT

commands (Load_BC_Datablk_MCH) or should be read by the user following

an RT to BC command (Read_BC_Datablk_MCH).

Chapter 3 Bus Controller Mode

page 3 - 2 Excalibur Systems

NOTE The description of the Command Stack entry is similar to the

description of the BC Architecture in the hardware User’s

Manual that came with your PCI/MCH. However, certain

changes have been made that take into account the

functionality of the Software Tools. For example, a user cannot

set up pointers to dual-port RAM. This shields the user from

low-level memory management considerations.

Command Stack Entry

 Control Word 1
st
 location ‘C’ language structure

 Command Word 1 2
nd

 location Struct CMDENTRY

{
unsigned short control;
unsigned short command1;
unsigned short command2;
unsigned short status1;
unsigned short status2;
unsigned short timer;
unsigned short datablk;
unsigned short gotocmd;

}

 Command Word 2

 Status Word 1

 Status Word 2

 Timer Value

 Data Block Number

 Branch Entry Number 8
th

location

Figure 3-1: BC Command Stack Entry

Data is filled in the Command Stack entry as follows:

Control Word

The first memory location of Command Stack entry contains the control

word. Each control word contains the Opcode, Retry number, Bus

definition, RT-to-RT instruction, Condition Codes, and the message

error bit. The control word is defined below:

15 12 11 10 09 08 07 01 00

Opcode Retry # BUSA/B RT-RT Conditions Codes Message Error

Figure 3-2: Control Word Definition

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 3

CONTROL WORD DESCRIPTION

Bit Bit Name Description

12-15 Opcode These bits define the opcode to be used by the PCI/MCH for
that particular Command Stack entry. If the opcode does not
perform any 1553 function, all other bits are ignored. Each of
the available opcodes is defined in OPCODE DEFINITION,
page 3-4.

10-11 Retry Number These bits define the number of retries for each individual
Command Stack entry and if the retry opcode is used.

 If the Ping-Pong function is not enabled, (see

Set_PingPong_MCH, page 2-14) all retries will occur on
the programmed bus.

 If the Ping-Pong function is enabled, the first retry will

always occur on the alternate bus, the second retry will
occur on the primary bus, the third retry will occur on
the alternate bus, and the fourth retry will occur on the
primary bus.

 BIT 11 BIT 10 # of Retries

 0 1 1

 1 0 2

 1 1 3

 0 0 4

09 Bus A/B This bit defines on which of the two buses the command
will be transmitted (i.e., primary bus). (Logic 1 = Bus A,
Logic 0 = Bus B).

08 RT-RT Transfer This bit defines whether or not the present Command Block
is a RT-to-RT transfer and if the board should transmit the
second command word. Data associated with a RT-to-RT is
always stored by the PCI/MCH.

01-07 Condition
Codes

These bits define the condition code the PCI/MCH uses for that
particular Command Block. Each of the available condition
codes are defined in CONDITION CODES, page 3-6.

00 Message Error 1 = A protocol message error occurred in the RT’s response.

For this occurrence, the PCI/MCH will overwrite this bit
prior to storing the Control Word into memory. Noise on the
1553 bus may be one example of such an error.

Chapter 3 Bus Controller Mode

page 3 - 4 Excalibur Systems

OPCODE DEFINITION

Opcode Field Name Definition

0000 End Of List This opcode instructs the PCI/MCH that the end of
the Command Stack has been encountered.
Command processing stops and the interrupt is
generated if the interrupt is enabled. No command
processing takes place (i.e., no 1553).

0001 Skip This opcode instructs the PCI/MCH to load the
message-to-message timer with the value stored in
timer value location. The PCI/MCH will then wait
the specific time before proceeding to the next
command block. This opcode allows for scheduling
a specific time between message execution. No
command processing takes place (i.e., no 1553).

0010 Go To This opcode instructs the PCI/MCH to “go to” the
Command Stack entry as specified in the branch
address location. No command process takes place
(i.e., no 1553).

0011 Built-in Test This opcode instructs the channel/module to
perform an internal built-in test. If the channel
passes the built-in test, then processing of the next
command block will continue. However, if the
PCI/MCH fails the built-in test, then processing
stops and an interrupt is generated, if the interrupt is
enabled. No command processing takes place (i.e.,
no 1553).

0100 Execute Block;
Continue

This opcode instructs the PCI/MCH to execute the
current Command Stack entry and proceed to the
next Command Stack entry. This opcode allows for
continuous operations. This is the standard method
for sending out a 1553 message.

0101 Execute Block;
Branch

This opcode instructs the PCI/MCH to execute the
current Command Stack entry and unconditionally
branch to the location as specified in the branch
address location.

0110 Execute Block;
Branch on Condition

This opcode instructs the PCI/MCH to execute the
current Command Stack entry and branch only if the
condition is met. If no conditions are met, the
opcode appears as an execute and continue.

0111 Retry on Condition This opcode instructs the PCI/MCH to perform
automatic retries, as specified in the control word, if
particular conditions occur. If no conditions are met,
the opcode appears as an execute and continue.

1000 Retry on Condition;
Branch

This opcode instructs the PCI/MCH to perform
automatic retries, as specified in the control word, if
particular conditions occur. If the conditions are met,
the PCI/MCH retries. Once all retries have
executed, the board branches to the location as
specified in the branch address location. If no
conditions are met, the opcode appears as an
execute and branch.

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 5

Opcode Field Name Definition

1001 Retry on Condition;
Branch if all Retries
Fail

This opcode instructs the PCI/MCH to perform
automatic retries, as specified in the control word, if
particular conditions occur. If the conditions are met
and all the retries fail, the PCI/MCH branches to the
location as specified in the branch address location.
If no conditions are met, the opcode appears as an
execute and continue.

1010 Interrupt; Continue This opcode instructs the PCI/MCH to interrupt and
continue processing on the next Command Stack
entry. When using this opcode, no 1553 processing
occurs.

1011 Call This opcode instructs the PCI/MCH to “go to” the
Command Stack entry as specified in the branch
address location without processing this block. The
next Command Stack entry address is saved in an
internal register so that the PCI/MCH may
remember one address and return to the next
Command Stack entry. No command processing
takes place (i.e., no 1553).

1100 Return to Call This opcode instructs the PCI/MCH to return to the
command block address saved during the Call
opcode. No command processing takes place (i.e.,
no 1553).

1101 Reserved The PCI/MCH will generate an illegal opcode
interrupt (if interrupt enabled) and automatically stop
execution if a reserved opcode is used.

1110 Load Minor Frame
Timer

This opcode instructs the PCI/MCH to load the
minor frame timer (MFT) with the value stored in the
eighth location of the current Command Stack entry.
The timer will be loaded after the previous MFT has
decremented to zero. After the MFT timer is loaded
with the new value, the PCI/MCH will proceed to the
next Command Stack entry. The Timer value is
interpreted as 64 microseconds per bit. No
command processing takes place (i.e., no 1553).

1111 Return to Branch This opcode instructs the PCI/MCH to return to the
command block address saved during a Branch
Opcode. No command processing takes place (i.e.,
no 1553).

Opcode Definition

NOTE For retries with interrupts enabled, all interrupts are logged

after message processing is complete.

Chapter 3 Bus Controller Mode

page 3 - 6 Excalibur Systems

CONDITION CODES

Condition codes have been provided as a means for the PCI/MCH to

perform certain functions based on the RT’s Status word. In a RT-to-RT

transfer, the conditions apply to both of the Status words. Each bit of

the condition codes is defined below.

Bit Bit Name Description

07 Message Error This condition will be met if the PCI/MCH detects an
error in the RT’s response, or if it detects no response.
The board will wait 15μsec. in 1553B Mode and 9μsec.
in 1553A Mode before declaring an RT no response).

06 Status Word
Response with
Message Error bit
set

Bit time 09 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Message Error bit set.

05 Status Word
Response with
Busy bit set

Bit time 16 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Busy bit set.

04 Status Word
Response with
Terminal Flag bit
set

Bit time 19 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Terminal Flag bit set.

03 Status Word
Response with
Subsystem Fail bit
set

Bit time 17 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Subsystem Fail bit set.

02 Status Word
Response with
Instrumentation
bit set

Bit time 10 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Instrumentation bit set.

01 Status Word
Response with
Service Request
bit set

Bit time 11 in 1553A Mode

This condition is met if the PCI/MCH detects that the
RT’s Status word has the Service Request bit set

Condition Codes

1553 Command Words

The second and third locations of the Command Stack entry are for

1553 command words. In most 1553 messages, only the first command

word needs to be initialized. In a RT-to-RT transfer, however, the first

Command word is the Receive Command and the second Command

word is the Transmit Command.

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 7

1553 Status Words

The fourth and fifth locations in the Command Stack entry are filled in

by the board with a Status word or words. As the RT responds to the BC

command, the corresponding status word will be stored in Status

Word 1. In a RT-to-RT transfer, the first Status word will be the status

of the Transmitting RT while the second Status word will be the status

of the Receiving RT.

Timer Value

The sixth location in the Command Stack entry is the Timer Value. This

timer is used for one of two purposes:

1. The value may be used to set up minor frame schedules when

using the Load Minor Frame Timer opcode (1110). The MFT

counter is clocked by a 15.625 KHz. (64μsec.) internal clock. The

MFT counter runs continuously during message processing and

must decrement to zero prior to loading the next Minor Frame

time value.

2. The value may be used as a message-to-message timer (MMT)

when using the Skip Opcode (0001). The MMT timer is clocked at

the 24MHz (41.666nsec.) rate and allows for the scheduling of a

specific time between message execution. The minimum

intermessage gap is 28 microseconds.

Data Block Number

The seventh location in the Command Stack entry is a number from

0 to 750 chosen by the user to be associated with this message. This

data block is only used for opcodes that cause 1553 messages to be sent.

In a RT-to-RT transfer, the board stores the transmitted data into the

data block. The same data block may be associated with more than one

command entry block facilitating the transmission of the same data to

multiple RTs. The data block number is used when calling

Read_BC_Datablk_MCH and Load_BC_Datablk_MCH to read data from and write

data to a data block.

Branch Address

The eighth location in the Command Stack entry contains Message Stack

Entry number of the entry to branch to for those opcodes that alter the

command sequence.

Chapter 3 Bus Controller Mode

page 3 - 8 Excalibur Systems

Command Block Chaining

The PCI/MCH allows the chaining of multiple MIL-STD-1553 commands

into major and minor frames depending on the applications. This feature

allows the board to structure message frames that perform independent

tasks such as periodic data transfer, service requests and bus diagnostics.

The first Command Stack entry executed is always Command Stack

Entry 0. Command Stacks entries are executed in a continuous fashion

as long as no “go to”, “branch”, “call” or “return” opcodes are used.

Almost any memory configuration is possible with the use of these

opcodes. Figures 3-3 and 3-4 show how several Command Stack entries

may be linked together to form a command frame and how branch

opcodes may be used to link minor frames. The minimum BC

intermessage gap is 28.0μsec.

Service

Frame
Return

Error

Frame

Conditional

BranchFrame

#N

Retries

Fail

Return

Figure 3-3: Minor Frame Branching

The example in Figure 3-4 shows a configuration of four minor frames,

in which Message A is sent in every frame, Message B is sent in every

other frame, and Message C is sent once. Each minor frame goes out at

10msec. (100Hz). If each minor frame is 10msec. long, Message A is sent

every 10msec., Message B is sent every 20msec., and Message C is sent

every 40msec.

Minor
Frame

#1

10 msec.

A
B
C

Minor
Frame

#2

10 msec.

A

Minor
Frame

#3

10 msec.

A
B

Minor
Frame

#4

10 msec.

A

Figure 3-4: Minor Frame Sequencing

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 9

Minor Frame

#N

Minor Frame

#1

Service

Frame

Minor

Frame

#2

Service

Frame

Service

Frame

Conditional

Branch

Return

Conditional

Branch

Return

Conditional

Branch

Return

Figure 3-5: Major Frame Sequencing

Chapter 3 Bus Controller Mode

page 3 - 10 Excalibur Systems

Bus Controller Functions

The functions to operate in BC Mode are described below:

Command_Word_MCH

Description Command_Word_MCH is a utility function to help the user

calculate the command word value.

Syntax Command_Word_MCH (int rtnum, int type, int subaddr,

int num_of_words, usint *commandword)

Input parameters rtnum Address of the RT

Allowed values: 0 - 31.

 type TRANSMIT Transmit message

 RECEIVE Receive message

 subaddr The selected subaddress of the RT.

Allowed values 0 - 31

 num_of_words The number of data words in the

message. Allowed values: 0 - 32

Note: 0 or 32 can be used to indicate a

word count of 32.

Output parameters commandword The calculated Command Word

Return values einval If an invalid parameter was used an

input.

 0 If successful

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 11

Control_Word_MCH

Description Control_Word_MCH is a utility application to calculate

the Control word in the Command Stack entry.

Syntax Control_Word_MCH (usint opcode, usint retrynum,

usint bus, usint rt2rt_flag, usint ccodes, usint

*controlword)

Input parameters opcode One or more of the following flags:

 END_OF_LIST

End of Command Stack has been

encountered

 SKIP_WITH_DELAY

Loads the message-to-message timer with

the value stored in the timer value location.

 GOTO

Go to Command Stack entry as specified in

the branch address

 BUILT_IN_TEST

PCI/MCH performs an internal built-in

test.

 EXEC_BLK_CONTINUE

To execute the current Command Stack

entry and proceed to the next Command

Stack entry.

 EXEC_BLK_BRANCH

To execute the current Command Stack

entry and unconditionally branch to the

location as specified in the branch address.

 EXEC_BLK_BRANCH_ON_COND

To execute the current Command Stack

entry and branch only if the condition is

met.

 RETRY_ON_COND

To perform automatic retries, if particular

conditions occur.

 RETRY_ON_COND_BRANCH

Once all retries have executed, the

PCI/MCH branches to the location as

specified in the branch address location.

 RETRY_ON_COND_BRANCH_ALL_FAIL

If are met and all the retries fail, the

PCI/MCH branches to the location as

specified in the branch address location.

Chapter 3 Bus Controller Mode

page 3 - 12 Excalibur Systems

Control_Word_MCH (cont.)

 INTERRUPT_CONTINUE

To interrupt and continue processing on the

next Command Stack entry.

 CALL

Go to Command Stack entry without

processing this block.

 RETURN_TO_CALL

Return to the Command Block address

saved during the Call opcode.

 LOAD_MINOR_FRAME_TIMER

Loads minor frame timer with value stored

in the eighth location of the current

Command Stack entry.

 RETURN_TO_BRANCH

Return to the Command Block address

saved during a Branch Opcode.

 INVALID_OPCODE_MASK

If an invalid opcode was used.

 For more details see OPCODE DEFINITION, page 3-4

 retrynum The number of retries: a value between 1

– 4

 Bus CW_BUS_A

CW_BUS_B

Bus A

Bus B

 rt2rt_flag CW_RT2RT

CW_NOT_RT2RT

RT-to-RT message

Not an RT message

 ccodes One or more of following flags Ored

together:

 MESSAGE_ERROR

Detects an error or no response

 SWR_MESSAGE_ERROR

Message Error bit set.

 SWR_BUSY

Busy bit set

 SWR_TERMINAL_FLAG

Terminal flag bit set

 SWR_SUBSYSFAIL

Subsystem Fail bit set

 SWR_INSTRUM

Instrumentation bit set

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 13

Control_Word_MCH (cont.)

 SWR_SREQ

Service Request bit set

 For more details, see CONDITION CODES, page 3-6

Output parameters controlword The calculated Control Word

Return values einval If an invalid parameter was used an

input.

 0 If successful

Get_BC_Cmd_MCH

Description Get_BC_Command_MCH reads a single Command Block

in the Command Stack. Most of the data read is the

data that was previously set by the user. The

PCI/MCH will fill in the values for the status field or

fields and the Message Error bit within the control

word.

Syntax Get_BC_Command_MCH (int handle, usint cmdnum,

struct CMDENTRY *entry)

Input parameters handle The handle returned by
Init_Module_MCH

 cmdnum The Command Stack entry number.

The first command executed is

Command Stack Entry 0. Following

block 0, blocks are executed either

sequentially or according to the jump

sequence requested by the user. The

maximum cmdnum value is 1023.

Output parameters entry A pointer to a structure of type

CMDENTRY. See Command Stack

and Data Block Structures, page 3-1.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BC_MODE_MCH as its argument prior

to calling this function.

 einval If the cmdnum is greater than 1023.

 0 If successful

Chapter 3 Bus Controller Mode

page 3 - 14 Excalibur Systems

Last_BC_Cmdnum_MCH

Description Last_BC_Cmdnum_MCH returns the number of the last

Command Stack entry to be executed. This

corresponds to the cmdnum argument in

Set_BC_Cmd_MCH or Get_BC_Cmd_MCH.

See Read_BC_Datablk_MCH.

Syntax Last_BC_Cmdnum_MCH (int handle, usint *cmdnum)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters cmdnum The number of the last Command

Stack entry

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If the board is not in BC Mode

 0 If successful

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 15

Load_BC_Datablk_MCH

Description Load_BC_Datablk_MCH is used to set up the data for a RT

receive command.

Syntax Load_BC_Datablk_MCH (int handle, usint blknum, usint

wdcnt, usint *data)

Input parameters handle The handle returned by Init_Module_MCH

 blknum The data stack number. Stack numbers

run from 0 to 750. This is the number

as filled in by the user in the

CMDENTRY structure used in the

Set_BC_Cmd_MCH function.

 wdcnt The number of words the user wishes to

write to the buffer.

 data A pointer to the data the user wishes to

write. The data buffer must be at least

wdcnt words long.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 einval If the data block number is greater than 750

or

If the number of words is greater than 32.

 emode If Set_Mode_MCH is not called with

BC_MODE_MCH as its argument

before calling this function.

 0 If successful

Chapter 3 Bus Controller Mode

page 3 - 16 Excalibur Systems

Read_BC_Datablk_MCH

Description Read_BC_Datablk_MCH is used to read the data for a RT

transit command or a RT-to-RT command. The

function may also be used to read back data written

by the user with Load_BC_Data_MCH.

Syntax Read_BC_Datablk_MCH (int handle, usint blknum,

usint wdcnt, usint *data)

Input parameters handle The handle returned by Init_Module_MCH

 blknum The data stack number. Stack

numbers run from 0 to 750. This is the

number as filled in by the user in the

CMDENTRY structure used in the

Set_BC_Cmd_MCH function.

 wdcnt The number of words the user wishes

to read from to the buffer.

Output parameters data A pointer to the buffer in which the

data is returned. The buffer must be at

least wdcnt words long.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 einval If the data block number is greater than 750

or

If the number of words is greater than 32.

 emode If Set_Mode_MCH is not called with

BC_MODE_MCH as its argument

before calling this function.

 0 If successful

Chapter 3 Bus Controller Mode

PCI/MCH Software Tools: Programmer's Reference page 3 - 17

Run_BC_MCH

Description Run_BC_MCH should be called only after all 1553

messages have been set up via calls to

Set_BC_Cmd_MCH. It will start execution of the

Message Stack.

Get_BC_Cmd_MCH, Load_BC_Datablk_MCH and

Read_BC_Datablk_MCH may be called after Run_BC_MCH

to read/alter data in real time and to check the

status of messages.

Syntax Run_BC_MCH (int handle)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH is not called with

BC_MODE_MCH as its argument

before calling this function.

 0 If successful

Chapter 3 Bus Controller Mode

page 3 - 18 Excalibur Systems

Set_BC_Cmd_MCH

Description Set_BC_Cmd_MCH sets up a single Command Stack

entry in the Command Stack. The user fills in the

CMDENTRY structure. See Command Stack and Data

Block Structures, page 3-1.

Note The Status Word fields are not used for this function

and other fields may or may not be needed

depending on the Opcode entered in the Control

Word.

Syntax Set_BC_Cmd_MCH (int handle, usint cmdnum, struct

CMDENTRY *entry)

Input parameters handle The handle returned by
Init_Module_MCH

 cmdnum The Command Stack entry number.

The first command executed is

Command Stack Entry 0. Following

block 0, blocks will be executed either

sequentially or according to the jump

sequence requested by the user. The

maximum cmdnum value is 1023.

 entry A pointer to a structure of type

CMDENTRY.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 einval If the cmdnum is greater than 1023.

 emode If Set_Mode_MCH was not called with

BC_MODE_MCH as its argument

before calling this function.

 ert2rtcmd If an RT-to-RT message does not

have a receive and transmit

command word filled in.

 0 If successful

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 1

4 Remote Terminal Mode
Chapter 4 describes Excalibur PCI/MCH operation in Remote Terminal

(RT) Mode. Remote Terminal Mode is used to simulate one Remote

Terminal.

This chapter discusses the following features and functions:

 Data Structures in RT Mode: the data structures that result from

command processing.

 Remote Terminal Functions: a description of the functions

associated with RT Mode.

 Assign_Buffer_MCH Set_Legal_Command

 Get_Datablk_Accessed_MCH Set_RT_Num_MCH

 Load_Buffer_MCH_MCH Set_RT_Status_MCH

 Load_Datablk_MCH Set_Status_Clear_MCH

 Read_Datablk_MCH Set_Subaddr_Interrupt_MCH

 Run_RT_MCH

Data Structures in RT Mode

For each complete message that is processed, the PCI/MCH generates a

Message Information word and Time-Tag word.

Each Message Information word contains:

 a word count,

 a message type, and

 message error information.

The Time-Tag word is:

 a 16-bit word containing the command validity time.

 The Time-Tag word data comes from the PCI/MCH internal Time-

Tag counter. The precision of the Time-Tag is 64μsec. per bit.

Chapter 4 Remote Terminal Mode

page 4 - 2 Excalibur Systems

These words are read using the Read_Datablk_MCH page 4-12, function in

the following sequence:

 Data[0] ;Message Info Word

 Data [1] ;Time-Tag

 Data [2] ;Data Word #1

 Data [32] ;Data Word #31

 Data [33] ;Data Word #32

Figure 4-1: RT Data Block Structure

The format of the Message Information word differs slightly from

message type to message type. The message types are described below.

Subaddress Receive Data

For receive commands, the PCI/MCH stores data words plus two

additional words. The PCI/MCH adds a Receive Information word and

Time-Tag word to each receive command data packet. The PCI/MCH

places the Receive Information word and Time-Tag word ahead of the

data words associated with a receive command (see Figure 4-1 above).

When message errors occur, the PCI/MCH stores the Receive

Information word and Time-Tag word. Once a message error condition

is observed, all data words are considered invalid.

Data storage occurs at the memory location pointed to by the data

pointer plus two 16-bit locations.

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 3

RECEIVE INFORMATION WORD

The following bits describe the Receive Information Word contents:

Bit Bit Name Description

11-15 WC[4-0] Word Count Bits. These five bits contain word count
information extracted from the receive command word bits
15 to 19.

10 Reserved

09 BUA/B Bus A/B.

1 = The message was received on Bus A.
0 = The message was received on Bus B.

08 RTRT Remote Terminal to Remote Terminal Transfer. The
command processed was a RT-to-RT transfer.

07 ME Message Error.

1 = A message error condition was observed during
processing. See bits 00 to 04 for details.

05-06 Reserved

04 ILL Illegal Command Received.

1 = The command received was an illegal command.

03 TO Time-Out Error.

1 = The PCI/MCH did not receive the proper number of
data words, i.e., the number of data words received
was less than the word count specified in the command
word.

02 OVR Overrun Error.

1 = The PCI/MCH received a word when none was
expected or the number of data words received was
greater then expected.

01 PRTY Parity Error.

1 = The PCI/MCH observed a parity error in the incoming
data words.

00 MAN Manchester Error.

1 = The PCI/MCH observed a Manchester error in the
incoming data words.

Receive Information Word

Chapter 4 Remote Terminal Mode

page 4 - 4 Excalibur Systems

Subaddress Transmit Data

The user is responsible for organizing the data packet (i.e., N data

words) into memory and establishing the applicable data pointer. Two

16-bit memory locations are located at the top of the data packet for the

storage of the Transmit Information word and the Time-Tag word.

An example transmit data structure for three words is shown below:

Data Pointer A 0200 (H) XXXX Reserved for Transmit Info word

equals 0100 (H) 0202 (H) XXXX Reserved for Time-Tag word

 0204 (H) FFFF Data word #1

 0206 (H) FFFF Data word #2

 0208 (H) FFFF Data word #3

NOTE Data Pointer A points to the top of the data structure, not to the

top of the data words.

TRANSMIT INFORMATION WORD

The following bits describe the Transmit Information word contents:

Bit Bit Name Description

11-15 WC[4-0] Word Count Bits. These five bits contain word count
information extracted from the receive command word bits
15 to 19.

10 Reserved

09 BUA/B Bus A/B.

1 = The message was received on Bus A.
0 = The message was received on Bus B.

08 Reserved

07 ME Message Error.

1 = A message error condition was observed during
processing. See bits 00 to 04 for more detail.

05-06 Reserved

04 ILL Illegal Command Received.

1 = The command received was an illegal command.

03 Reserved

02 OVR Overrun Error.

1 = The PCI/MCH received a data word with a Transmit
Command.

00-01 Reserved

Transmit Information Word

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 5

Mode Code Data

The transmit and receive data structures for mode codes are similar to

those for a subaddress. The receive data structure contains an

Information word, Time-Tag word, and message data word. All receive

mode codes with data have one associated data word. Data storage

occurs at the memory location pointed to by the data pointer plus two

16-bit locations. Reception of the synchronize with data mode code

automatically loads the Time-Tag counter and stores the data word at

the address defined by the data pointer plus two 16-bit locations.

The transmit mode code data structure contains an Information word,

Time-Tag word, and associated data word.

For MIL-STD-1553A mode of operation, all mode codes are defined

without data words. For mode codes without data, the data structure

contains the Message Information word and Time-Tag word only.

NOTE In MIL-STD-1553A, all mode codes are without data and the

T/R bit is ignored.

Chapter 4 Remote Terminal Mode

page 4 - 6 Excalibur Systems

MODE CODE RECEIVE INFORMATION WORD

The following bits describe the Mode Code Receive Information word

contents:

Bit Bit Name Description

11-15 MC[4-0] Mode Code. These five bits contain the mode code
information extracted from the receive command word bits
15 to 19.

10 Reserved

09 BUA/B Bus A/B.

1 = The message was received on Bus A.
0 = The message was received on Bus B.

08 RTRT Remote Terminal to Remote Terminal Transfer.

1 = The command processed was an RT-to-RT transfer.

07 ME Message Error.

1 = A message error condition was observed during
processing. See bits 00 to 04 for details.

05-06 Reserved

04 ILL Illegal Command Received.

1 = The command received was an illegal command.

03 TO

Time-out Error.

1 = The PCI/MCH did not receive the proper number of
data words, i.e., the number of data words received
was less than the word count specified in the
command word.

02 OVR Overrun Error.

1 = The PCI/MCH received a word when none was
expected, or the number of data words received was
greater than expected.

01 PRTY Parity Error.

1 = The PCI/MCH observed a parity error in the incoming
data words.

00 MAN Manchester Error.

1 = The PCI/MCH observed a Manchester error in the
incoming data words.

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 7

MODE CODE TRANSMIT INFORMATION WORD

The following bits describe the Mode Code Transmit Information word

contents:

Bit Bit Name Description

11-15 MC[4-0] Mode Code. These five bits contain the mode code information
extracted from the command word bits 15 to 19.

10 Reserved

09 BUA/B Bus A/B.

1 = The message was received on Bus A.
0 = The message was received on Bus B.

08 Reserved

07 ME Message Error.

1 = A message error condition was observed during
processing. See bits 00 to 04 for details.

05-06 Reserved

04 ILL Illegal Command Received.

1 = The command received was an illegal command.

03 Reserved

02 OVR Overrun Error.

1 = The PCI/MCH received a data word with a Transmit
Command.

00-01 Reserved

Chapter 4 Remote Terminal Mode

page 4 - 8 Excalibur Systems

Remote Terminal Functions

The Remote Terminal functions enable the user to:

 Control the RT to be simulated.

 Determine the data to be sent for each RT/subaddress

combination.

 Store data to each RT/subaddress combination.

Assign_Buffer_MCH

Description Assign_Buffer_MCH assigns an 'additional buffer' to a

particular subaddress.

This function enables the user to change RT data and

make sure that this newly changed data is sent out

next.

Syntax Assign_Buffer_MCH (int handle, usint subaddr,

usint buffernum)

Input parameters handle The handle returned by
Init_Module_MCH

 subaddr The selected subaddress of the RT

 buffernum A value between 0 – 480

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode The board is not in RT Mode

 einval If an invalid value was used an

input

 0 If successful

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 9

Get_Datablk_Accessed_MCH

Description Get_Datablk_Accessed_MCH checks the Block Accessed bit in

the area of the memory assigned to the selected

subaddress for the RT. This call resets the BAC to 0.

Syntax Get_Datablk_Accessed_MCH (int handle, unsigned short

subaddr, short txorrx, short msgtype, usint *accessed)

Input parameters handle The handle returned by Init_Module_MCH

 subaddr The selected subaddress of the RT or the

mode code number.

 txorrx TRANSMIT

indicates looking for a Transmit message.

RECEIVE

indicates looking for a Receive message.

 msgtype MODE_CMD

for mode code commands

STANDARD_CMD

for non-mode code commands.

Output parameters accessed 0 If data block has not been accessed or

message processing incomplete.

 1 If data block has been accessed (i.e.,

completion of message processing).

Return values ebadhandle If an invalid handle was specified; should

be value returned by Init_Module_MCH

 emode If Set_Mode_MCH was not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its argument

prior to calling this function.

 einval If an illegal value was used as an input.

 0 If successful

Chapter 4 Remote Terminal Mode

page 4 - 10 Excalibur Systems

Load_Buffer_MCH

Description Load_Buffer_MCH loads data into one of the 'additional

buffers.

This function enables the user to change RT data and

make sure that this newly changed data is sent out

next.

Syntax Load_Buffer_MCH (int handle, usint buffernum,

usint *data)

Input parameters handle The handle returned by Init_Module_MCH

 buffernum A value between 0 – 480

 data A pointer to data to be loaded to the

buffer.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode The board is not in RT Mode

 einval If an invalid value was used an input

 0 If successful

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 11

Load_Datablk_MCH

Description Load_Datablk_MCH is used to set up the data to be

transmitted by the RT for a RT transmit command.

Data blocks are loaded on the basis of the

subaddress. Separate buffers are used for regular

and mode code commands.

Syntax Load_Datablk_MCH (int handle, usint subaddress ,

usint modecode, usint *data)

Input parameters handle The handle returned by
Init_Module_MCH

 subaddress The subaddress of the RT that is to be

transmitted is MODECODE if mode

code data is to be loaded.

 modecode If the subaddress is MODECODE,

this parameter contains the mode

code number in response to which

the data is to be sent. For example, if

the data is to be sent with a Send

Vector mode code command,

modecode should be set to 16.

 data A pointer to the data the user wishes

to write. The data buffer must be at

least 2 words long.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function.

 einval If an illegal value was used as an

input.

 0 If successful

Chapter 4 Remote Terminal Mode

page 4 - 12 Excalibur Systems

Read_Datablk_MCH

Description Read_Datablk_MCH is used to read the data to be

associated with a particular subaddress. Both data

received by the PCI/MCH via receive messages and

data set by the user via Load_Datablk_MCH may be read

using this function. In addition to the data,

Read_Datablk_MCH will return a Status word and a Time-

Tag associated with the last command directed to that

data block.

Syntax Read_Datablk_MCH (int handle, usint subaddress, usint

modecode, usint *data, short msgtype, short txorrx)

Input parameters handle The handle returned by Init_Module_MCH

 subaddress The subaddress of the data to be read

or

MODECODE

if mode code data is to be read

 modecode If the subaddress is MODECODE, this

parameter contains the mode code

number with which the data is

associated. For example, if the user wants

to read the data word associated with the

Synchronized With Data mode code

command, modecode should be set to 17.

 msgtype STANDARD_CMD

For non-mode code, non-broadcast

messages

 BRDCAST_CMD

For non-mode code, broadcast message

 MODE_CMD

For mode code, non-broadcast message

 BROADCAST_MODE_CMD

For mode code, broadcast message

 txorrx TRANSMIT

For transmit message type

 RECEIVE

For receive message type

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 13

Read_Datablk_MCH (cont.)

Output parameters data A pointer to the data in the specified

datablock. The data buffer must be at

least 34 words long for a non-mode code

subaddress and at least 3 words long for a

mode code subaddress.

Order of the words returned:

 first word is the Message Information

word

 second word is the Time-Tag

 third and following words are data

(see RT Data Block Structure, Figure 4-1)

Return values ebadhandle If an invalid handle was specified; should

be value returned by Init_Module_MCH.

 emode IF Set_Mode_MCH was not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function.

 einval If an illegal value was used as an input.

 0 If successful

Run_RT_MCH

Description Run_RT_MCH should be called only after calling

Set_RT_Num_MCH.

Calling the function causes commands to the

PCI/MCH's RT address to be responded to, and are

recorded on the RAM.

Syntax Run_RT_MCH (int handle)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH is not called with

RT_MODE_MCH as its argument

before calling this function.

 0 If successful

Chapter 4 Remote Terminal Mode

page 4 - 14 Excalibur Systems

Set_Legal_Command_MCH

Description The PCI/MCH allows the user the option of

illegalizing particular subaddresses within the RT.

The default setting of Set_Legal_Command_MCH is for

all commands allowed by MIL-STD-1553A to be

legal, except for Broadcast Transmit.

Broadcast commands may be illegalized separately

from non-mode codes. Transmit commands may be

illegalized separately from Receive commands. This

function is used both to set commands as legal as

well as to set them as illegal.

Syntax Set_Legal_Command_MCH (int handle, usint

subaddress, short brdcst, short txorrx, short

ismode, short legal)

Input parameters handle The handle returned by Init_Module_MCH

 subaddress If ismode = NOMODECODE, this

parameter is the subaddress to be

regarded as illegal

 If ismode = MODECODE, this

parameter is the mode code to be

regarded as illegal

 brdcst BROADCAST

If commands to RT 31 are to be

illegalized

 NOBROADCAST

If a command to the board’s address is

to be illegalized

 txorrx TRANSMIT

If a transmit command to a

subaddress is to be illegalized

 RECEIVE

If a receive command to a subaddress

is to be illegalized

 ismode MODECODE

If a particular mode code is to be

illegalized

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 15

Set_Legal_Command_MCH (cont.)

 NOMODECODE

If a non-mode code subaddress is to be

illegalized

 legal LEGAL

If the selected command type is to be

treated as legal

 ILLEGAL

If the selected command type is to be

treated as illegal

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 einval If an illegal value was used as an

input.

 0 If successful

Set_RT_Num_MCH

Description Set_RT_Num_MCH sets the RT address of the PCI/MCH.

The function must be called before calling:

 Run_RT_MCH or

 RT subaddress functions

Syntax Set_RT_Num_MCH (int handle, short rtid)

Input parameters handle The handle returned by Init_Module_MCH

 rtid The RT address of the board

Output parameters none

Return values ebadhandle If an invalid handle was specified; should

be value returned by Init_Module_MCH

 emode If Set_Mode_MCH is not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function

 einval If rtid is greater than 31

 0 If successful

Chapter 4 Remote Terminal Mode

page 4 - 16 Excalibur Systems

Set_RT_Status_MCH

Description Set_RT_Status_MCH permits the user to set bits within

the 1553 Status word returned by the RT.

Note See Set_Status_Clear_MCH for the scope of this function.

Syntax Set_RT_Status_MCH (int handle, short status)

Input parameters handle The handle returned by Init_Module_MCH

 status For MIL-STD-1553B applications set the

following bits:

(See Set_Protocol_MCH, page 2-15)

 Bit Name Description

 09 INS Instrumentation Bit

1 = The Instrumentation bit of the MIL-
STD-1553B Status word.

Bit 10 of the Status word.

 08 SRQ Service Request Bit.

1 = The Service Request bit of the
 MIL-STD-1553B Status word.

Bit 11 of the Status Word.

 04-07 Reserved

 03 Busy Busy Bit.

1 = The outgoing MIL-STD-1553B Status
word. Prevents memory accesses.

Bit 16 of the Status word.

 02 SSYF Subsystem Flag Bit.

1 = The Subsystem Flag bit of the
MIL-STD-1553B Status word.

Bit 17 of the Status word.

 01 Reserved

 00 TF Terminal Flag.

1 = The outgoing MIL-STD-1553B Status
word. The board automatically sets this
bit if a BIT failure occurs. Inhibit
Terminal Flag mode code prevents the
assertion by the host. Override Inhibit
Terminal Flag mode code
reestablishes the Terminal flag option.

Bit 19 of the Status word.

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 17

Set_RT_Status (cont.)

 For MIL-STD-1553A applications set the following

bits:

(See Set_Protocol_MCH, page 2-15)

 Bit Bit Name Description

09 SB10 Status bit x 10

08 SB11 Status bit x 11

07 SB12 Status bit x 12

06 SB13 Status bit x 13

05 SB14 Status bit x 14

04 SB15 Status bit x 15

03 SB16 Status bit x 16

02 SB17 Status bit x 17

01 SB18 Status bit x 18

00 SB19 Status bit x 19

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH.

 emode If Set_Mode_MCH is not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its

argument before calling this function

 0 If successful

Chapter 4 Remote Terminal Mode

page 4 - 18 Excalibur Systems

Set_Status_Clear_MCH

Description Set_Status_Clear_MCH determines the scope of a call on

Set_RT_Status_MCH. Calls on Set_RT_Status_MCH may be

effective for the next Status word sent out or until a

further call on Set_RT_Status_MCH changes the status.

Syntax Set_Status_Clear_MCH (int handle, short flag)

Input parameters handle The handle returned by
Init_Module_MCH

 flag IMMEDIATE

Causes calls to Set_RT_Status_MCH to

affect only a single command to the RT.

 STATIC

Causes calls to Set_RT_Status_MCH to

affect all commands until a

subsequent Set_RT_Status_MCH call is

made.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH is not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its

argument before calling this

function

 einval If rtid is greater than 31

 0 If successful

Chapter 4 Remote Terminal Mode

PCI/MCH Software Tools: Programmer's Reference page 4 - 19

Set_Subaddr_Interrupt_MCH

Description Set_Subaddr_Interrupt_MCH must be called with

Set_Interrupt_Mask_MCH to cause an interrupt to occur

when a specific subaddress or mode code receives a

command. An interrupt may be requested either for

all commands to a particular subaddress or for

Broadcast commands to a particular subaddress.

Receive commands and Transmit commands to a

subaddress are enabled separately.

Altrnatively, Set_Subaddr_Interrupt_MCH can be used to

disable an interrupt requested by a previous call to

this function.

Syntax Set_Subaddr_Interrupt_MCH (int handle, usint subaddr,

short txorrx, short msgtype, short inttype)

Input parameters handle The handle returned by Init_Module_MCH.

 subaddr The selected subaddress of the RT.

 txorrx TRANSMIT

indicates looking for a Transmit message

RECEIVE indicates looking for a Receive

message.

 msgtype MODE_CMD

for mode code commands

STANDARD_CMD

for non-mode code commands.

 inttype To enable:

 BROADCAST

interrupt only when broadcast command

received

ACCESS

interrupt on any non-broadcast access of

the subaddress

 ACCESS_AND_BROADCAST

interrupt on both BROADCAST and

ACCESS message types

 To disable:

 NO_SA_INTERRUPT

Chapter 4 Remote Terminal Mode

page 4 - 20 Excalibur Systems

Set_Subaddr_Interrupt_MCH (cont.)

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

RT_MODE_MCH or

BM_RT_MODE_MCH as its

argument before calling this

function.

 einval If an illegal value was used as an

input.

 0 If successful

Chapter 5 Bus Monitor Mode

PCI/MCH Software Tools: Programmer's Reference page 5 - 1

5 Bus Monitor Mode

Chapter 5 describes Excalibur PCI/MCH operation in Bus Monitor (BM)

Mode. Bus Monitor Mode is used to simulate the Bus Monitor in an

application.

This chapter discusses the following features and functions:

 Bus Monitor Data Block Structure: a description of each of the locations

associated with the Data Block.

 Bus Monitor Functions: a description of the functions associated with

Bus Monitor Mode.

The functions, in alphabetical order, are:

 Clear_Monitor_RT_MCH

 Monitor_All_RT_MCH

 Monitor_RT_MCH

 Read_Next_Message_MCH

 Run_BM_MCH

 Run_BMRT_MCH

The Bus Monitor Data Block Structure

Figure 5-1 shows a diagram of the Bus Monitor Data Block Structure

followed by a description of each location associated with the BM Data

Block.

1553 Data Word 0

‘C’ language structure

 structure BM_MSG

{
unsigned short data [32];
unsigned short command1;
unsigned short command2;
unsigned short status1;
unsigned shortstatus2;
unsigned short timetag;
unsigned short msginfo;
}

1553 Data Word 32

Command Word 1

Command Word 2

Status Word 1

Status Word 2

Time Tag

Message Info Word

Figure 5-1: Bus Monitor Data Block Structure

Chapter 5 Bus Monitor Mode

page 5 - 2 Excalibur Systems

1553 Data Words

The data structure always allows space for 32 data words regardless of

the number of data words actually associated with the message. The

actual number of words may be obtained from the Command word or

the Message Information word.

Command Words

The next two locations in the Monitor Block are for Command words.

 In non-RT-to-RT 1553 messages, only the first Command word will

be stored.

 In a RT-RT transfer, the first Command word is the Receive

Command and the second Command word is the Transmit

Command.

Status Words

The next two locations in the Monitor Block are for Status words. As the

RT responds to the BC command, the corresponding Status word will be

stored in Status word 1. In a RT-to-RT transfer, the status of the

Transmitting RT will be placed in Status word 1 and the status of the

Receiving RT will be placed in Status word 2.

Time-Tag

The next location in the Monitor Block is the time Time-Tag associated

with the message. The Time-Tag is stored into this location at the end of

the message processing (i.e., captured after the command is validated.)

The Time-Tag resolution is 64 microseconds per bit.

Message Information Word

The last memory location of each Monitor Block contains the Message

Information word. Each information word contains the bus identifier,

RT-RT indicator and the error information.

15 12 11 10 09 08 07 00

0 1 0 0 0 0 BUA/B RT-RT Error Information

Figure 5-2: Message Information Word

Chapter 5 Bus Monitor Mode

PCI/MCH Software Tools: Programmer's Reference page 5 - 3

Bit Number Description

12-15 Default. With the Monitor Block architecture resembling the BC
Command Block architecture, these bits default to a “0100” state
(which is the Execute and Continue Opcode) in case the monitor
must switch to the BC Mode of operation.

10-11 Default. With the Monitor Block architecture resembling the BC,
these bits default to a “00” state. If the monitor must switch to the
BC, the retries will be set at four per message.

09 Bus A/B. This bit defines on which of the two buses the command
was received. (Logic 1 = Bus A, Logic 0 = Bus B).

08 RT-to-RT Transfer. This bit defines whether or not the message
associated with this Monitor Block was an RT-to-RT transfer and
whether the board saved the second command word. This bit will be
set only if the board is instructed to monitor the Receive RT.

00-07 Error Bits. These bits define the conditions of the message received
by the board for that particular Monitor Block. Each of the message
information bits is defined in the following section.

Message Information Word

ERROR INFORMATION BITS

Error information bits are provided as a means to supply more data on

the message. In a RT-to-RT transfer, the information applies to both of

the status words. Each error information bit is defined below.

Bit Number Description

07 Message Error. This bit will be set if the monitor detects an error either
in the command word, or the data words, or the RT’s status.

06 Mode Code without Data. This bit will be set if the monitor detects that
the command being processed is a mode code without data words.

05 Broadcast. This bit will be set if the monitor detects that the command
being processed is a broadcast message.

04 Reserved

03 Time-Out Error. This bit will be set if the RT did not receive the proper
number of data words, e.g., the number of data words received was
less than the word count specified in the command word.

02 Overrun Error. This bit will be set if the RT received a word when none
were expected or the number of data words received was greater than
expected.

01 Parity Error. This bit will be set if a parity error has occurred on the data
words or the RT’s Status word.

00 Manchester Error. This bit will be set if a Manchester error has occurred
on either the data words or the RT’s Status word.

Error Information Bits

Chapter 5 Bus Monitor Mode

page 5 - 4 Excalibur Systems

Bus Monitor Functions

Clear_Monitor_RT_MCH

Description Clear_Monitor_RT_MCH causes the Monitor to ignore all

messages to the specified RT address.

Syntax Clear_Monitor_RT_MCH (int handle, short rtid)

Input parameters handle The handle returned by Init_Module_MCH

 rtid The address to ignore.

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function.

 ebadid If the rtid is greater than 31

 0 If successful

Monitor_All_RT_MCH

Description Monitor_All_RT_MCH causes the monitor to start

monitoring all RT addresses disabled by multiple

calls to Clear_Monitor_RT_MCH.

Syntax Monitor_All_RT_MCH (int handle)

Input parameters handle The handle returned by Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function.

 0 If successful

Chapter 5 Bus Monitor Mode

PCI/MCH Software Tools: Programmer's Reference page 5 - 5

Monitor_RT_MCH

Description Monitor_RT_MCH causes the Monitor to start monitoring a

RT address that was disabled by Clear_Monitor_RT_MCH.

Syntax Monitor_RT_MCH (int handle, short rtid)

Input parameters handle The handle returned by Init_Module_MCH

 rtid The address to monitor

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_MODE_MCH or

BM_RT_MODE_MCH as its argument

before calling this function.

 ebadid If the rtid is greater than 31

 0 If successful

Chapter 5 Bus Monitor Mode

page 5 - 6 Excalibur Systems

Read_Next_Message_MCH

Description Read_Next_Message_MCH returns a single message from

the board’s RAM. Messages are returned in the

sequence they were read by the PCI/MCH. The

PCI/MCH has the capacity for holding 750 messages

in a circular buffer allowing the user considerable

leeway in terms of getting the data out before it is

overwritten.

Syntax Read_Next_Messag_MCH (int handle, struct BM_MSG

*msg)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters msg A pointer to a structure of type

BM_MSG defined in the section Bus

Monitor Data Block Structure, page 5-1.

The user must allocate space for a

structure of type BM_MSG and then

supply a pointer to that structure in this

function. The structure is then filled in

by this function.

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_MODE_MCH or

BM_RT_MODE_MCH as its

argument before calling this function.

 Successful if:

 either enomsg If there are no unread messages

on the PCI/MCH.

 or 0 Returns a single unread

message

Chapter 5 Bus Monitor Mode

PCI/MCH Software Tools: Programmer's Reference page 5 - 7

Run_BM_MCH

Description Run_BM_MCH starts execution of the PCI/MCH,

causing commands on the bus to be recorded in the

PCI/MCH's RAM.

Syntax Run_BM_MCH (int handle)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_MODE_MCH as its argument

before calling this function.

 0 If successful

Run_BMRT_MCH

Description Run_BMRT_MCH starts execution of the PCI/MCH,

causing commands on the bus to be recorded in the

PCI/MCH's RAM.

Syntax Run_BMRT_MCH (int handle)

Input parameters handle The handle returned by
Init_Module_MCH

Output parameters none

Return values ebadhandle If an invalid handle was specified;

should be value returned by
Init_Module_MCH

 emode If Set_Mode_MCH was not called with

BM_RT_MODE_MCH as its

argument before calling this

function.

 0 If successful

Chapter 5 Bus Monitor Mode

page 5 - 8 Excalibur Systems

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 1

6 Appendices

Chapter 6 contains Appendices that include useful information for

working with Excalibur PCI/MCH Family Software Tools. The topics covered

are:

Appendix A: Flags for PCI/MCH Software Tools

Functions

page 6-2

Appendix B: PCI/MCH Software Tools Library page 6-6

Appendix C: PCI/MCH Software Tools Code Index page 6-9

Appendix D: Error Messages page 6-11

Chapter 6 Appendices

page 6 - 2 Excalibur Systems

Appendix A: Flags for PCI/MCH Software Tools Functions

Flags are grouped according to the functions in which they are used.

Most flags are input parameters to the functions they are listed under.

NOTE Always use flags where provided, rather than the value

associated with it, since values may change. For example, use

SIMULATE with Init_Module_MCH rather than 0xFFFF.

Control Registers

START_EXECUTION 0x8000 STEX bit in control Register

START_BIT 0x4000 Start BIT

RESET 0x2000 Reset Summit

BUAEN 0x1000 Bus A enable

BUBEN 0x0800 Bus B enable

BMTC 0x0020 Bus Monitor Control

BROADCAST 0x0010 Set to make RT31 Broadcast

NOBROADCAST 0x0 RT31 is normal RT

PPEN 0x4 Ping Pong enable

Control Word

CW_BUS_A 0x0200 Send a message on Bus A

CW_BUS_B 0x0000 Send a message on Bus B

CW_RT2RT 0x0100 Message is RT to RT

CW_NOT_RT2RT 0x0000 Message is not RT to RT

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 3

Control Word Opcode defines

END_OF_LIST 0x0000 Opcode for stop transmitting

SKIP_WITH_DELAY 0x1000 Load the message-to-message timer
with the value stored in the timer value
location

GOTO 0x2000 Go to the Command Stack entry as
specified in the branch address location

BUILT_IN_TEST 0x3000 Perform an internal built-in test

EXEC_BLK_CONTINUE 0x4000 Execute current Command Stack entry
and proceed to next Command Stack
entry

EXEC_BLK_BRANCH 0x5000 Execute current Command Stack entry
and unconditionally branch to the
location specified in the branch address
location

EXEC_BLK_BRANCH_ON_COND 0x6000 Execute current Command Stack entry
and branch only if the condition is met

RETRY_ON_COND 0x7000 Perform automatic retries

RETRY_ON_COND_BRANCH 0x8000 Perform automatic retries as specified
in the Control word, if particular
condition occurs

RETRY_ON_COND_BRANCH_ALL
_FAIL

0x9000 Perform automatic retries as specified
in the Control word, if particular
condition occurs. If the conditions are
met and all the retries fail, the PCI/MCH
branches to the location as specified in
the branch address location.

INTERRUPT_CONTINUE 0xa000 Interrupt and continue processing on
the next Command Stack entry

CALL 0xb000 Go to the Command Stack entry
specified in the branch address location
without processing this block

RETURN_TO_CALL 0xc000 Return to the Command Block entry
address saved during Call opcode

LOAD_MINOR_FRAME_TIMER 0xe000 Load the minor frame timer with value
stored in the eighth location of the
current Command Stack entry

RETURN_TO_BRANCH 0xf000 Return to the Command Block Address
saved during a Branch opcode.

INVALID_OPCODE_MASK 0xf000 An invalid opcode

Chapter 6 Appendices

page 6 - 4 Excalibur Systems

Condition Codes for Control_Word utility

MESSAGE_ERROR 0x80 no response detected

SWR_MESSAGE_ERROR 0x40 RT status word has the Message Error bit set

SWR_BUSY 0x20 RT status word has the Busy bit set

SWR_TERMINAL_FLAG 0x10 RT status word has the Terminal Flag bit set

SWR_SUBSYSFAIL 0x08 RT status word has the Subsystem Fail bit set

SWR_INSTRUM 0x04 RT status word has the Instrumentation bit set

SWR_SREQ 0x02 RT status word has the service Request bit set

Init_Card

SIMULATE 0Xffff Test drivers without board present

EXC_1553PCIMCH EXC-1553PCI/MCH only: If only one channel

is used, the define value EXC-1553PCI/MCH
can be used instead of a device number

EXC_4000PCI M4K1553MCH only: If only one module is

used, the define value EXC-4000PCI can be
used instead of a device number

Read_Datablk

STANDARD_CMD 0 Non-mode code, non-broadcast message

BRDCAST_CMD 1 Non-mode code, broadcast message

MODE_CMD 2 Mode code, non-broadcast message

BROADCAST_MODE_CMD 3 Mode code, broadcast message

RT Mode

TRANSMIT 1 RT transmit message type

RECEIVE 0 RT receive message type

LEGAL 1 Selected RT command type is treated as legal

ILLEGAL 0 Selected RT command type is treated as
illegal

MODECODE 32 If a particular mode code is to be illegalized

NOMODECODE 0 If a non-mode code subaddress is to be
illegalized

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 5

Set_Interrupt_Mask

MERR 0x0800 Message error (bit, word, parity)

SUBAD 0x0400 Subaddress accessed

Set_Subaddr_Interrupt

BROADCAST 0x0010 Interrupt on Broadcast only

ACCESS 0x0001 Interrupt any non- BROADCAST access of the
subaddress

ACCESS_AND_
BROADCAST

0x0002 Interrupt on ACCESS and BROADCAST

NO_SA_INTERRUPT 0x0000 Disable the interrupts

Set_Mode

MSEL 0x0300 Status word bits for mode selection

BC_MODE_MCH 0x0000 Bus Controller Mode

RT_MODE_MCH 0X0100 Remote Terminal Mode

BM_MODE_MCH 0x0200 Bus Monitor Mode

BM_RT_MODE_MCH 0x0300 Simultaneous Remote Terminal / Bus Monitor Mode

Set_Protocol

MIL_STD_1553A 1 Set the board response time to MIL-STD-1553A
specifications

MIL_STD_1553B 2 Set the board response time to MIL-STD-1553B
specifications

Set_Status_Clear

STATIC 0 Causes calls to Set_RT_Status_MCH to affect all
commands to RT until the next call to
Set_RT_Status_MCH.

IMMEDIATE 1 Causes calls to Set_RT_Status_MCH to affect only a
single command to the RT.

BIT Word Register bits

DMAF 1 << 15 DMA fail

WRAPF 1 << 14 Wrap fail

TAPF 1 << 13 Terminal Address Parity Fail

BITF 1 << 12 Bit fail

BUAF 1 << 11 Bus A fail

BUBF 1 << 10 Bus B fail

HANGF 1 << 0 BIT failed to complete

BIT_WORD_MASK 0xfc00 Bit word masked

Chapter 6 Appendices

page 6 - 6 Excalibur Systems

Appendix B: PCI/MCH Software Tools Library

This Appendix includes a list of the files in the Excalibur PCI/MCH Family

Software Tools needed to write test programs. The files are divided into

three categories:

Source code and header files for the Software Tools functions. Header

files should be included in application programs as needed.

File
Extension

Description

*.c source code

*.h header file

DLLs and associated *.lib files.

File
Extension

Description

*.dll Borland compiler DLL

*MS.dll Microsoft compiler DLL

*.lib Index file used for creating
applications using Borland DLL
functions

*MS.lib Index file used for creating
applications using Microsoft DLL
functions

Demo programs are examples of programs using Software Tools. They

can be used as a basis for user-defined programs. Demo programs

include the following types of files.

File
Extension

Description

*.c Demo source code

*.ide Borland demo project files

*.exe Borland demo executable files

*.dsp

*.dsw

Microsoft demo project files

*MS.exe Microsoft demo executable files

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 7

PCI/MCH Software Tools Library

FILE NAME DESCRIPTION

SOURCE CODE FILES bcset Functions for setting up the PCI/MCH in BC
Mode

 bmset Functions for setting up the PCI/MCH in BM
Mode

 deviceio Functions relating to resources such as memory
and interrupts – these files act on kernel drivers

 deviceio_mch Functions for interaction with kernel driver, for
Windows 9x, NT and 2000

 error_mch Function for returning error messages

 gset Functions for setting up the PCI/MCH for none
Mode specific values

 initcard Initialization and Release_module_MCH
functions

 rtset Functions for setting up the PCI/MCH in RT
Mode

SOURCE HEADER

FILES
deviceio Header file for interaction with kernel driver

 error_devio Header file containing error codes for the
Excalibur Card Kernel Drivers

 Error_mch Header file containing error message codes

 exc4000 Header file containing functions for
communicating with Excalibur kernel driver

 excdef Header file used to differentiate between
Excalibur products.

 Excsysio Header file which defines shared files between
DLL and kernel driver

 flags_mch Header file containing flags for all modes

 Instance_mch Header file for global board structure

 mchIncl Header file containing flags for use in DLL
source code only

 mem_mch Header file containing structure for Summit
registers

 Proto_mch Header file, prototypes of all functions

DEMO PROGRAMS Demo_BC Demo program for testing BC functions

 Demo_mon Demo program for testing BM functions

 Demo_RT Demo program for testing advanced RT
functions

Chapter 6 Appendices

page 6 - 8 Excalibur Systems

*.DLLS AND *.LIB

FILES
The table below shows the name of the DLL file, and its
corresponding LIB file, for each type of board/module under the
Microsoft and Borland compilers.

 Board/Module Borland Microsoft

 PCI/MCH mch mchms

 cPCI/MCH mch mchms

 M4K1553MCH mch mchms

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 9

Appendix C: PCI/MCH Software Tools Code Index

The PCI/MCH Family Software Tools is a set of “C” language functions

designed to aid users of the PCI/MCH hardware to write test programs.

Below is an alphabetical listing of all the functions and the name of the

Software Tools file which contains its programming code.

FUNCTION CODE FILE NAME

Assign_Buffer_MCH rtset.c

Clear_Monitor_RT_MCH bmset.c

Command_Word_MCH bcset.c

Control_Word_MCH bcset.c

Get_Datablk_Accessed_MCH rtset.c

Get_BC_Cmd_MCH bcset.c

Get_BIT_Value_MCH gset.c

Get_Broadcast_Setting_MCH gset.c

Get_Curr_Command_Word_MCH gset.c

Get_Error_String_MCH error_mch.c

Get_Interrupt_Count_MCH deviceio_mch.c

Get_Op_Status_Reg_MCH gset.c

Get_Pending_Value_MCH gset.c

Init_Module_MCH initcard.c

Last_BC_Cmdnum_MCH bcset.c

Load_BC_Datablk_MCH bcset.c

Load_Buffer_MCH rtset.c

Load_Datablk_MCH rtset.c

Monitor_All_RT_MCH bmset.c

Monitor_RT_MCH bmset.c

Read_BC_Datablk_MCH bcset.c

Read_Datablk_MCH rtset.c

Chapter 6 Appendices

page 6 - 10 Excalibur Systems

FUNCTION CODE FILE NAME

Read_Next_Message_MCH bmset.c

Release_Module_MCH initcard.c

Run_BC_MCH bcset.c

Run_BM_MCH bmset.c

Run_BMRT_MCH bmset.c

Run_RT_MCH rtset.c

Set_BC_Cmd_MCH bcset.c

Set_Broadcast_MCH gset.c

Set_Interrupt_Mask_MCH rtset.c

Set_Legal_Command_MCH rtset.c

Set_Mode_MCH gset.c

Set_PingPong_MCH gset.c

Set_Protocol_MCH gset.c

Set_RT_Num_MCH rtset.c

Set_RT_Status_MCH rtset.c

Set_Status_Clear_MCH rtset.c

Set_Subaddr_Int_MCH rtset.c

Stop_Card_MCH gset.c

Wait_For_Interrupt_MCH deviceio_Mch.c

Wait_For_Multiple_Interrupts_MCH deviceio_Mch.c

Chapter 6 Appendices

PCI/MCH Software Tools: Programmer's Reference page 6 - 11

Appendix D: Error Messages

All routines in PCI/MCH Family Software Tools are written as ‘C’ functions,

i.e., they return values. A negative value signifies an error. Full error

messages may be printed using the Get_Error_String_MCH function. Below

is a list of all PCI/MCH Family Software Tools error messages, the negative

value of each, and an explanation of the error.

ERROR CODE VALUE EXPLANATION

ebadid -1 Undefined message

einval -2 Illegal value used as an input

emode -3 Mode specific command called when in
the wrong mode

ebadchan -4 Tried to set channel to illegal value

ememerr -5 Memory test failed

enomsg -6 No new messages available

incompatible_parameters -7 Incompatible parameters

etimeout -8 Reset in Set_Mode_MCH timed out

eboardtoomany -9 Too many boards initialized

ert2rtcmd -10 Error in format of RT to RT

sim_no_mem -11 No memory for simulation

noirqset -12 No interrupt allocated

ewrngmodule -13 Module specified is not MCH

enomodule -14 No MCH module present at the specified
location

ebadhandle -33 Invalid handle specified: should be value
returned by Init_Module_MCH

eopenkernel -1001 Cannot open kernel device; check
Excalibur Configuration Utility settings

ekernelcantmap -1002 Kernel driver cannot map memory

ereleventhandle -1003 Error in kernel Release_Event_Handle

egetintcount -1004 Error in kernel Get_Interrupt_Count

egetchintcount -1005 Error in kernel
Get_Channel_Interrupt_Count

egetintchannels -1006 Error in kernel Get_Interrupt_Channels

ewriteiobyte -1007 Error in kernel writeiobyte

ereadiobyte -1008 Error in kernel readiobyte

egeteventhand1 -1009 Error in kernel Get_Event_Handle, first
part

egeteventhand2 -1010 Error in kernel Get_Event_Handle, second
part

eopenscmant -1011 Error in openscmanager in startkerneldriver

Chapter 6 Appendices

page 6 - 12 Excalibur Systems

ERROR CODE VALUE EXPLANATION

eopenservicet -1012 Error in openservice in startkerneldriver

estartservice -1013 Error in startservice in startkerneldriver

eopenscmanp -1014 Error in openscmanager in stopkerneldriver

eopenservicep -1015 Error in openservice in stopkerneldriver

econtrolservice -1016 Error in controlservice in stopkerneldriver

eunmapmem -1017 Error in kernel unmapmemory

egetirq -1018 Error in Get_IRQ_Number

eallocresources -1019 Error allocating resources. See ReadMe.txt
for details on resource allocation problems.

egetramsize -1020 Error in kernel getramsize

ekernelwriteattrib -1021 Error in kernel write attribute

ekernelreadattrib -1022 Kernel read attribute error

ekernelfrontdesk -1023 Kernel frontdesk error

ekernelOscheck -1024 Kernel Oscheck error

ekernelfrontdeskload -1025 Kernel frontdeskload error

ekerneliswin2000compatible -1026 Kernel iswin2000compatible error

ekernelbankramsize -1027 Kernel banksize error

ekernelgetcardtype -1028 Kernel getcardtype error

emodnum -1029 Invalid module number specified

regnotset -1030 Board not configured. Reboot after

ExcConfig utility is run and board is in

slot

ekernelbankphysaddr -1031 Error in GetBankPhysAddress

ekernelclosedevice -1032 Error in CloseKernelDrive

ekerneldevicenotopen -1034 Kernel error: device is not opened

ekernelinitmodule -1035 Kernel initialization error

ekernelbadparam -1036 Kernel error: bad input parameter

ekernelbadpointer -1037 Kernel error: invalid pointer to output
buffer

ekerneltimeout -1038 Wait for Interrupt function returned with
timeout

ekernelnotwin2000 -1039 Operating System is not Windows 2000

 Function Index

PCI/MCH Software Tools: Programmer's Reference Index - 1

Function Index

Assign_Buffer_MCH, 4-8

Clear_Monitor_RT_MCH, 5-4

Command_Word_MCH, 3-10

Control_Word_MCH, 3-11

Get_BC_Cmd_MCH, 3-13

Get_BIT_Value_MCH, 2-1

Get_Broadcast_Setting_MCH, 2-3

Get_Curr_Command_Word_MCH, 2-3

Get_Datablk_Accessed_MCH, 4-9

Get_Error_String_MCH, 2-4

Get_Interrupt_Count_MCH, 2-17

Get_Op_Status_Reg_MCH, 2-5

Get_Pending_Value_MCH, 2-8

Init_Module_MCH, 2-10

Last_BC_Cmdnum_MCH, 3-14

Load_BC_Datablk_MCH, 3-15

Load_Buffer_MCH, 4-10

Load_Datablk_MCH, 4-11

Monitor_All_RT_MCH, 5-4

Monitor_RT_MCH, 5-5

Read_BC_Datablk_MCH, 3-16

Read_Datablk_MCH, 4-12

Read_Next_Message_MCH, 5-6

Release_Module_MCH, 2-11

Run_BC_MCH, 3-17

Run_BM_MCH, 5-7

Run_BMRT_MCH, 5-7

Run_RT_MCH, 4-13

Set_BC_Cmd_MCH, 3-18

Set_Broadcast_MCH, 2-12

Set_Interrupt_Mask_MCH, 2-13

Set_Legal_Command_MCH, 4-14

Set_Mode_MCH, 2-14

Set_PingPong_MCH, 2-14

Set_Protocol_MCH, 2-15

Set_RT_Num_MCH, 4-15

Set_RT_Status_MCH, 4-16

Set_Status_Clear_MCH, 4-18

Set_Subaddr_Interrupt_MCH, 4-19

Stop_Card_MCH, 2-16

Wait_For_Interrupt_MCH, 2-18

Wait_For_Multiple_Interrupts_MCH, 2-20

 Function Index

Index - 2 Excalibur Systems

The information contained in this document is believed to be accurate.

However, no responsibility is assumed by Excalibur Systems, Inc. for its

use and no license or rights are granted by implication or otherwise in

connection herewith. Specifications are subject to change without notice.

April 2012, Rev A-2

	Table of Contents
	1 Introduction
	Getting Started
	Overview
	Installation
	PCI/MCH Software Tools Functions
	Compiler Options
	Conventions Used in the Programmer’s Reference

	Technical Support

	2 General Functions
	Get_BIT_Value_MCH
	Get_Broadcast_Setting_MCH
	Get_Curr_Command_Word_MCH
	Get_Error_String_MCH
	Get_Op_Status_Reg_MCH
	Get_Pending_Value_MCH
	Init_Module_MCH
	Release_Module_MCH
	Set_Broadcast_MCH
	Set_Interrupt_Mask_MCH
	Set_Mode_MCH
	Set_PingPong_MCH
	Set_Protocol_MCH
	Stop_Card_MCH
	Using Interrupts in Windows
	Get_Interrupt_Count_MCH
	Wait_For_Interrupt_MCH
	Wait_For_Multiple_Interrupts_MCH

	3 Bus Controller Mode
	Command Stack and Data Block Structures
	Command Stack Entry
	Control Word
	Control Word Description
	Opcode Definition
	Condition Codes

	1553 Command Words
	1553 Status Words
	Timer Value
	Data Block Number
	Branch Address

	Command Block Chaining
	Bus Controller Functions
	Command_Word_MCH
	Control_Word_MCH
	Get_BC_Cmd_MCH
	Last_BC_Cmdnum_MCH
	Load_BC_Datablk_MCH
	Read_BC_Datablk_MCH
	Run_BC_MCH
	Set_BC_Cmd_MCH

	4 Remote Terminal Mode
	Data Structures in RT Mode
	Subaddress Receive Data
	RECEIVE INFORMATION WORD

	Subaddress Transmit Data
	TRANSMIT INFORMATION WORD

	Mode Code Data
	MODE CODE RECEIVE INFORMATION WORD
	MODE CODE TRANSMIT INFORMATION WORD

	Remote Terminal Functions
	Assign_Buffer_MCH
	Get_Datablk_Accessed_MCH
	Load_Buffer_MCH
	Load_Datablk_MCH
	Read_Datablk_MCH
	Run_RT_MCH
	Set_Legal_Command_MCH
	Set_RT_Num_MCH
	Set_RT_Status_MCH
	Set_Status_Clear_MCH
	Set_Subaddr_Interrupt_MCH

	5 Bus Monitor Mode
	The Bus Monitor Data Block Structure
	1553 Data Words
	Command Words
	Status Words
	Time-Tag
	Message Information Word
	ERROR INFORMATION BITS

	Bus Monitor Functions
	Clear_Monitor_RT_MCH
	Monitor_All_RT_MCH
	Monitor_RT_MCH
	Read_Next_Message_MCH
	Run_BM_MCH
	Run_BMRT_MCH

	6 Appendices
	Appendix A: Flags for PCI/MCH Software Tools Functions
	Appendix B: PCI/MCH Software Tools Library
	Appendix C: PCI/MCH Software Tools Code Index
	Appendix D: Error Messages

	Function Index

